Step |
Hyp |
Ref |
Expression |
1 |
|
4sqlem5.2 |
|
2 |
|
4sqlem5.3 |
|
3 |
|
4sqlem5.4 |
|
4 |
|
4sqlem10.5 |
|
5 |
2
|
adantr |
|
6 |
5
|
nnzd |
|
7 |
|
zsqcl |
|
8 |
6 7
|
syl |
|
9 |
1
|
adantr |
|
10 |
5
|
nnred |
|
11 |
10
|
rehalfcld |
|
12 |
11
|
recnd |
|
13 |
12
|
negnegd |
|
14 |
1 2 3
|
4sqlem5 |
|
15 |
14
|
adantr |
|
16 |
15
|
simpld |
|
17 |
16
|
zred |
|
18 |
1 2 3
|
4sqlem6 |
|
19 |
18
|
adantr |
|
20 |
19
|
simprd |
|
21 |
17 20
|
ltned |
|
22 |
21
|
neneqd |
|
23 |
|
2cnd |
|
24 |
23
|
sqvald |
|
25 |
24
|
oveq2d |
|
26 |
5
|
nncnd |
|
27 |
|
2ne0 |
|
28 |
27
|
a1i |
|
29 |
26 23 28
|
sqdivd |
|
30 |
26
|
sqcld |
|
31 |
30 23 23 28 28
|
divdiv1d |
|
32 |
25 29 31
|
3eqtr4d |
|
33 |
30
|
halfcld |
|
34 |
33
|
halfcld |
|
35 |
16
|
zcnd |
|
36 |
35
|
sqcld |
|
37 |
34 36 4
|
subeq0d |
|
38 |
32 37
|
eqtr2d |
|
39 |
|
sqeqor |
|
40 |
35 12 39
|
syl2anc |
|
41 |
38 40
|
mpbid |
|
42 |
41
|
ord |
|
43 |
22 42
|
mpd |
|
44 |
43 16
|
eqeltrrd |
|
45 |
44
|
znegcld |
|
46 |
13 45
|
eqeltrrd |
|
47 |
9 46
|
zaddcld |
|
48 |
|
zsqcl |
|
49 |
47 48
|
syl |
|
50 |
47 6
|
zmulcld |
|
51 |
47
|
zred |
|
52 |
5
|
nnrpd |
|
53 |
51 52
|
modcld |
|
54 |
53
|
recnd |
|
55 |
|
0cnd |
|
56 |
|
df-neg |
|
57 |
43 3 56
|
3eqtr3g |
|
58 |
54 55 12 57
|
subcan2d |
|
59 |
|
dvdsval3 |
|
60 |
5 47 59
|
syl2anc |
|
61 |
58 60
|
mpbird |
|
62 |
|
dvdssq |
|
63 |
6 47 62
|
syl2anc |
|
64 |
61 63
|
mpbid |
|
65 |
26
|
sqvald |
|
66 |
5
|
nnne0d |
|
67 |
|
dvdsmulcr |
|
68 |
6 47 6 66 67
|
syl112anc |
|
69 |
61 68
|
mpbird |
|
70 |
65 69
|
eqbrtrd |
|
71 |
8 49 50 64 70
|
dvds2subd |
|
72 |
47
|
zcnd |
|
73 |
72
|
sqvald |
|
74 |
73
|
oveq1d |
|
75 |
72 72 26
|
subdid |
|
76 |
26
|
2halvesd |
|
77 |
76
|
oveq2d |
|
78 |
9
|
zcnd |
|
79 |
78 12 12
|
pnpcan2d |
|
80 |
77 79
|
eqtr3d |
|
81 |
80
|
oveq2d |
|
82 |
|
subsq |
|
83 |
78 12 82
|
syl2anc |
|
84 |
32
|
oveq2d |
|
85 |
81 83 84
|
3eqtr2d |
|
86 |
74 75 85
|
3eqtr2d |
|
87 |
71 86
|
breqtrd |
|