Step |
Hyp |
Ref |
Expression |
1 |
|
4sq.1 |
|
2 |
|
4sq.2 |
|
3 |
|
4sq.3 |
|
4 |
|
4sq.4 |
|
5 |
|
4sq.5 |
|
6 |
|
4sq.6 |
|
7 |
|
4sq.7 |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
1 2 3 4 8 9
|
4sqlem12 |
|
11 |
|
simplrl |
|
12 |
|
elfznn |
|
13 |
11 12
|
syl |
|
14 |
|
simpr |
|
15 |
|
abs1 |
|
16 |
15
|
oveq1i |
|
17 |
|
sq1 |
|
18 |
16 17
|
eqtri |
|
19 |
18
|
oveq2i |
|
20 |
|
simplrr |
|
21 |
|
1z |
|
22 |
|
zgz |
|
23 |
21 22
|
ax-mp |
|
24 |
1
|
4sqlem4a |
|
25 |
20 23 24
|
sylancl |
|
26 |
19 25
|
eqeltrrid |
|
27 |
14 26
|
eqeltrrd |
|
28 |
|
oveq1 |
|
29 |
28
|
eleq1d |
|
30 |
29 6
|
elrab2 |
|
31 |
13 27 30
|
sylanbrc |
|
32 |
31
|
ne0d |
|
33 |
6
|
ssrab3 |
|
34 |
|
nnuz |
|
35 |
33 34
|
sseqtri |
|
36 |
|
infssuzcl |
|
37 |
35 32 36
|
sylancr |
|
38 |
7 37
|
eqeltrid |
|
39 |
33 38
|
sselid |
|
40 |
39
|
nnred |
|
41 |
13
|
nnred |
|
42 |
4
|
ad2antrr |
|
43 |
|
prmnn |
|
44 |
42 43
|
syl |
|
45 |
44
|
nnred |
|
46 |
|
infssuzle |
|
47 |
35 31 46
|
sylancr |
|
48 |
7 47
|
eqbrtrid |
|
49 |
|
prmz |
|
50 |
42 49
|
syl |
|
51 |
|
elfzm11 |
|
52 |
21 50 51
|
sylancr |
|
53 |
11 52
|
mpbid |
|
54 |
53
|
simp3d |
|
55 |
40 41 45 48 54
|
lelttrd |
|
56 |
32 55
|
jca |
|
57 |
56
|
ex |
|
58 |
57
|
rexlimdvva |
|
59 |
10 58
|
mpd |
|