Step |
Hyp |
Ref |
Expression |
1 |
|
4sq.1 |
|
2 |
|
4sq.2 |
|
3 |
|
4sq.3 |
|
4 |
|
4sq.4 |
|
5 |
|
4sq.5 |
|
6 |
|
4sq.6 |
|
7 |
|
4sq.7 |
|
8 |
|
4sq.m |
|
9 |
|
4sq.a |
|
10 |
|
4sq.b |
|
11 |
|
4sq.c |
|
12 |
|
4sq.d |
|
13 |
|
4sq.e |
|
14 |
|
4sq.f |
|
15 |
|
4sq.g |
|
16 |
|
4sq.h |
|
17 |
|
4sq.r |
|
18 |
|
4sq.p |
|
19 |
|
eluz2nn |
|
20 |
8 19
|
syl |
|
21 |
20
|
nnred |
|
22 |
21
|
resqcld |
|
23 |
22
|
rehalfcld |
|
24 |
23
|
rehalfcld |
|
25 |
24
|
recnd |
|
26 |
9 20 13
|
4sqlem5 |
|
27 |
26
|
simpld |
|
28 |
|
zsqcl |
|
29 |
27 28
|
syl |
|
30 |
29
|
zred |
|
31 |
30
|
recnd |
|
32 |
10 20 14
|
4sqlem5 |
|
33 |
32
|
simpld |
|
34 |
|
zsqcl |
|
35 |
33 34
|
syl |
|
36 |
35
|
zred |
|
37 |
36
|
recnd |
|
38 |
25 25 31 37
|
addsub4d |
|
39 |
23
|
recnd |
|
40 |
39
|
2halvesd |
|
41 |
40
|
oveq1d |
|
42 |
38 41
|
eqtr3d |
|
43 |
42
|
adantr |
|
44 |
22
|
recnd |
|
45 |
44
|
2halvesd |
|
46 |
45
|
adantr |
|
47 |
21
|
recnd |
|
48 |
47
|
sqvald |
|
49 |
48
|
adantr |
|
50 |
|
simpr |
|
51 |
17 50
|
eqtr3id |
|
52 |
51
|
oveq1d |
|
53 |
30 36
|
readdcld |
|
54 |
11 20 15
|
4sqlem5 |
|
55 |
54
|
simpld |
|
56 |
|
zsqcl |
|
57 |
55 56
|
syl |
|
58 |
57
|
zred |
|
59 |
12 20 16
|
4sqlem5 |
|
60 |
59
|
simpld |
|
61 |
|
zsqcl |
|
62 |
60 61
|
syl |
|
63 |
62
|
zred |
|
64 |
58 63
|
readdcld |
|
65 |
53 64
|
readdcld |
|
66 |
65
|
recnd |
|
67 |
20
|
nnne0d |
|
68 |
66 47 67
|
divcan1d |
|
69 |
68
|
adantr |
|
70 |
49 52 69
|
3eqtr2rd |
|
71 |
46 70
|
oveq12d |
|
72 |
53
|
recnd |
|
73 |
64
|
recnd |
|
74 |
39 39 72 73
|
addsub4d |
|
75 |
74
|
adantr |
|
76 |
44
|
subidd |
|
77 |
76
|
adantr |
|
78 |
71 75 77
|
3eqtr3d |
|
79 |
23 53
|
resubcld |
|
80 |
9 20 13
|
4sqlem7 |
|
81 |
10 20 14
|
4sqlem7 |
|
82 |
30 36 24 24 80 81
|
le2addd |
|
83 |
82 40
|
breqtrd |
|
84 |
23 53
|
subge0d |
|
85 |
83 84
|
mpbird |
|
86 |
23 64
|
resubcld |
|
87 |
11 20 15
|
4sqlem7 |
|
88 |
12 20 16
|
4sqlem7 |
|
89 |
58 63 24 24 87 88
|
le2addd |
|
90 |
89 40
|
breqtrd |
|
91 |
23 64
|
subge0d |
|
92 |
90 91
|
mpbird |
|
93 |
|
add20 |
|
94 |
79 85 86 92 93
|
syl22anc |
|
95 |
94
|
biimpa |
|
96 |
78 95
|
syldan |
|
97 |
96
|
simpld |
|
98 |
43 97
|
eqtrd |
|
99 |
24 30
|
resubcld |
|
100 |
24 30
|
subge0d |
|
101 |
80 100
|
mpbird |
|
102 |
24 36
|
resubcld |
|
103 |
24 36
|
subge0d |
|
104 |
81 103
|
mpbird |
|
105 |
|
add20 |
|
106 |
99 101 102 104 105
|
syl22anc |
|
107 |
106
|
biimpa |
|
108 |
98 107
|
syldan |
|
109 |
58
|
recnd |
|
110 |
63
|
recnd |
|
111 |
25 25 109 110
|
addsub4d |
|
112 |
40
|
oveq1d |
|
113 |
111 112
|
eqtr3d |
|
114 |
113
|
adantr |
|
115 |
96
|
simprd |
|
116 |
114 115
|
eqtrd |
|
117 |
24 58
|
resubcld |
|
118 |
24 58
|
subge0d |
|
119 |
87 118
|
mpbird |
|
120 |
24 63
|
resubcld |
|
121 |
24 63
|
subge0d |
|
122 |
88 121
|
mpbird |
|
123 |
|
add20 |
|
124 |
117 119 120 122 123
|
syl22anc |
|
125 |
124
|
biimpa |
|
126 |
116 125
|
syldan |
|
127 |
108 126
|
jca |
|