Step |
Hyp |
Ref |
Expression |
1 |
|
4sq.1 |
|
2 |
|
4sq.2 |
|
3 |
|
4sq.3 |
|
4 |
|
4sq.4 |
|
5 |
|
4sq.5 |
|
6 |
|
4sq.6 |
|
7 |
|
4sq.7 |
|
8 |
|
prmnn |
|
9 |
4 8
|
syl |
|
10 |
9
|
nncnd |
|
11 |
10
|
mulid2d |
|
12 |
6
|
ssrab3 |
|
13 |
|
nnuz |
|
14 |
12 13
|
sseqtri |
|
15 |
1 2 3 4 5 6 7
|
4sqlem13 |
|
16 |
15
|
simpld |
|
17 |
|
infssuzcl |
|
18 |
14 16 17
|
sylancr |
|
19 |
7 18
|
eqeltrid |
|
20 |
|
oveq1 |
|
21 |
20
|
eleq1d |
|
22 |
21 6
|
elrab2 |
|
23 |
19 22
|
sylib |
|
24 |
23
|
simprd |
|
25 |
1
|
4sqlem2 |
|
26 |
24 25
|
sylib |
|
27 |
26
|
adantr |
|
28 |
|
simp1l |
|
29 |
28 2
|
syl |
|
30 |
28 3
|
syl |
|
31 |
28 4
|
syl |
|
32 |
28 5
|
syl |
|
33 |
|
simp1r |
|
34 |
|
simp2ll |
|
35 |
|
simp2lr |
|
36 |
|
simp2rl |
|
37 |
|
simp2rr |
|
38 |
|
eqid |
|
39 |
|
eqid |
|
40 |
|
eqid |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
|
simp3 |
|
44 |
1 29 30 31 32 6 7 33 34 35 36 37 38 39 40 41 42 43
|
4sqlem17 |
|
45 |
44
|
pm2.21i |
|
46 |
45
|
3expia |
|
47 |
46
|
anassrs |
|
48 |
47
|
rexlimdvva |
|
49 |
48
|
rexlimdvva |
|
50 |
27 49
|
mpd |
|
51 |
50
|
pm2.01da |
|
52 |
23
|
simpld |
|
53 |
|
elnn1uz2 |
|
54 |
52 53
|
sylib |
|
55 |
54
|
ord |
|
56 |
51 55
|
mt3d |
|
57 |
56 19
|
eqeltrrd |
|
58 |
|
oveq1 |
|
59 |
58
|
eleq1d |
|
60 |
59 6
|
elrab2 |
|
61 |
60
|
simprbi |
|
62 |
57 61
|
syl |
|
63 |
11 62
|
eqeltrrd |
|