| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sq.1 |
|
| 2 |
|
4sq.2 |
|
| 3 |
|
4sq.3 |
|
| 4 |
|
4sq.4 |
|
| 5 |
|
4sq.5 |
|
| 6 |
|
4sq.6 |
|
| 7 |
|
4sq.7 |
|
| 8 |
|
prmnn |
|
| 9 |
4 8
|
syl |
|
| 10 |
9
|
nncnd |
|
| 11 |
10
|
mullidd |
|
| 12 |
6
|
ssrab3 |
|
| 13 |
|
nnuz |
|
| 14 |
12 13
|
sseqtri |
|
| 15 |
1 2 3 4 5 6 7
|
4sqlem13 |
|
| 16 |
15
|
simpld |
|
| 17 |
|
infssuzcl |
|
| 18 |
14 16 17
|
sylancr |
|
| 19 |
7 18
|
eqeltrid |
|
| 20 |
|
oveq1 |
|
| 21 |
20
|
eleq1d |
|
| 22 |
21 6
|
elrab2 |
|
| 23 |
19 22
|
sylib |
|
| 24 |
23
|
simprd |
|
| 25 |
1
|
4sqlem2 |
|
| 26 |
24 25
|
sylib |
|
| 27 |
26
|
adantr |
|
| 28 |
|
simp1l |
|
| 29 |
28 2
|
syl |
|
| 30 |
28 3
|
syl |
|
| 31 |
28 4
|
syl |
|
| 32 |
28 5
|
syl |
|
| 33 |
|
simp1r |
|
| 34 |
|
simp2ll |
|
| 35 |
|
simp2lr |
|
| 36 |
|
simp2rl |
|
| 37 |
|
simp2rr |
|
| 38 |
|
eqid |
|
| 39 |
|
eqid |
|
| 40 |
|
eqid |
|
| 41 |
|
eqid |
|
| 42 |
|
eqid |
|
| 43 |
|
simp3 |
|
| 44 |
1 29 30 31 32 6 7 33 34 35 36 37 38 39 40 41 42 43
|
4sqlem17 |
|
| 45 |
44
|
pm2.21i |
|
| 46 |
45
|
3expia |
|
| 47 |
46
|
anassrs |
|
| 48 |
47
|
rexlimdvva |
|
| 49 |
48
|
rexlimdvva |
|
| 50 |
27 49
|
mpd |
|
| 51 |
50
|
pm2.01da |
|
| 52 |
23
|
simpld |
|
| 53 |
|
elnn1uz2 |
|
| 54 |
52 53
|
sylib |
|
| 55 |
54
|
ord |
|
| 56 |
51 55
|
mt3d |
|
| 57 |
56 19
|
eqeltrrd |
|
| 58 |
|
oveq1 |
|
| 59 |
58
|
eleq1d |
|
| 60 |
59 6
|
elrab2 |
|
| 61 |
60
|
simprbi |
|
| 62 |
57 61
|
syl |
|
| 63 |
11 62
|
eqeltrrd |
|