Step |
Hyp |
Ref |
Expression |
1 |
|
4sq.1 |
|
2 |
1
|
eleq2i |
|
3 |
|
id |
|
4 |
|
ovex |
|
5 |
3 4
|
eqeltrdi |
|
6 |
5
|
a1i |
|
7 |
6
|
rexlimdvva |
|
8 |
7
|
rexlimivv |
|
9 |
|
oveq1 |
|
10 |
9
|
oveq1d |
|
11 |
10
|
oveq1d |
|
12 |
11
|
eqeq2d |
|
13 |
12
|
2rexbidv |
|
14 |
|
oveq1 |
|
15 |
14
|
oveq2d |
|
16 |
15
|
oveq1d |
|
17 |
16
|
eqeq2d |
|
18 |
17
|
2rexbidv |
|
19 |
13 18
|
cbvrex2vw |
|
20 |
|
oveq1 |
|
21 |
20
|
oveq1d |
|
22 |
21
|
oveq2d |
|
23 |
22
|
eqeq2d |
|
24 |
|
oveq1 |
|
25 |
24
|
oveq2d |
|
26 |
25
|
oveq2d |
|
27 |
26
|
eqeq2d |
|
28 |
23 27
|
cbvrex2vw |
|
29 |
|
eqeq1 |
|
30 |
29
|
2rexbidv |
|
31 |
28 30
|
syl5bb |
|
32 |
31
|
2rexbidv |
|
33 |
19 32
|
syl5bb |
|
34 |
8 33
|
elab3 |
|
35 |
2 34
|
bitri |
|