| Step |
Hyp |
Ref |
Expression |
| 1 |
|
4sq.1 |
|
| 2 |
1
|
4sqlem2 |
|
| 3 |
|
gzreim |
|
| 4 |
3
|
adantr |
|
| 5 |
|
gzreim |
|
| 6 |
5
|
adantl |
|
| 7 |
|
gzcn |
|
| 8 |
3 7
|
syl |
|
| 9 |
8
|
absvalsq2d |
|
| 10 |
|
zre |
|
| 11 |
|
zre |
|
| 12 |
|
crre |
|
| 13 |
10 11 12
|
syl2an |
|
| 14 |
13
|
oveq1d |
|
| 15 |
|
crim |
|
| 16 |
10 11 15
|
syl2an |
|
| 17 |
16
|
oveq1d |
|
| 18 |
14 17
|
oveq12d |
|
| 19 |
9 18
|
eqtrd |
|
| 20 |
|
gzcn |
|
| 21 |
5 20
|
syl |
|
| 22 |
21
|
absvalsq2d |
|
| 23 |
|
zre |
|
| 24 |
|
zre |
|
| 25 |
|
crre |
|
| 26 |
23 24 25
|
syl2an |
|
| 27 |
26
|
oveq1d |
|
| 28 |
|
crim |
|
| 29 |
23 24 28
|
syl2an |
|
| 30 |
29
|
oveq1d |
|
| 31 |
27 30
|
oveq12d |
|
| 32 |
22 31
|
eqtrd |
|
| 33 |
19 32
|
oveqan12d |
|
| 34 |
33
|
eqcomd |
|
| 35 |
|
fveq2 |
|
| 36 |
35
|
oveq1d |
|
| 37 |
36
|
oveq1d |
|
| 38 |
37
|
eqeq2d |
|
| 39 |
|
fveq2 |
|
| 40 |
39
|
oveq1d |
|
| 41 |
40
|
oveq2d |
|
| 42 |
41
|
eqeq2d |
|
| 43 |
38 42
|
rspc2ev |
|
| 44 |
4 6 34 43
|
syl3anc |
|
| 45 |
|
eqeq1 |
|
| 46 |
45
|
2rexbidv |
|
| 47 |
44 46
|
syl5ibrcom |
|
| 48 |
47
|
rexlimdvva |
|
| 49 |
48
|
rexlimivv |
|
| 50 |
2 49
|
sylbi |
|
| 51 |
1
|
4sqlem4a |
|
| 52 |
|
eleq1a |
|
| 53 |
51 52
|
syl |
|
| 54 |
53
|
rexlimivv |
|
| 55 |
50 54
|
impbii |
|