Step |
Hyp |
Ref |
Expression |
1 |
|
4sq.1 |
|
2 |
1
|
4sqlem2 |
|
3 |
|
gzreim |
|
4 |
3
|
adantr |
|
5 |
|
gzreim |
|
6 |
5
|
adantl |
|
7 |
|
gzcn |
|
8 |
3 7
|
syl |
|
9 |
8
|
absvalsq2d |
|
10 |
|
zre |
|
11 |
|
zre |
|
12 |
|
crre |
|
13 |
10 11 12
|
syl2an |
|
14 |
13
|
oveq1d |
|
15 |
|
crim |
|
16 |
10 11 15
|
syl2an |
|
17 |
16
|
oveq1d |
|
18 |
14 17
|
oveq12d |
|
19 |
9 18
|
eqtrd |
|
20 |
|
gzcn |
|
21 |
5 20
|
syl |
|
22 |
21
|
absvalsq2d |
|
23 |
|
zre |
|
24 |
|
zre |
|
25 |
|
crre |
|
26 |
23 24 25
|
syl2an |
|
27 |
26
|
oveq1d |
|
28 |
|
crim |
|
29 |
23 24 28
|
syl2an |
|
30 |
29
|
oveq1d |
|
31 |
27 30
|
oveq12d |
|
32 |
22 31
|
eqtrd |
|
33 |
19 32
|
oveqan12d |
|
34 |
33
|
eqcomd |
|
35 |
|
fveq2 |
|
36 |
35
|
oveq1d |
|
37 |
36
|
oveq1d |
|
38 |
37
|
eqeq2d |
|
39 |
|
fveq2 |
|
40 |
39
|
oveq1d |
|
41 |
40
|
oveq2d |
|
42 |
41
|
eqeq2d |
|
43 |
38 42
|
rspc2ev |
|
44 |
4 6 34 43
|
syl3anc |
|
45 |
|
eqeq1 |
|
46 |
45
|
2rexbidv |
|
47 |
44 46
|
syl5ibrcom |
|
48 |
47
|
rexlimdvva |
|
49 |
48
|
rexlimivv |
|
50 |
2 49
|
sylbi |
|
51 |
1
|
4sqlem4a |
|
52 |
|
eleq1a |
|
53 |
51 52
|
syl |
|
54 |
53
|
rexlimivv |
|
55 |
50 54
|
impbii |
|