Metamath Proof Explorer


Theorem 4sqlem4a

Description: Lemma for 4sqlem4 . (Contributed by Mario Carneiro, 14-Jul-2014)

Ref Expression
Hypothesis 4sq.1 S = n | x y z w n = x 2 + y 2 + z 2 + w 2
Assertion 4sqlem4a A i B i A 2 + B 2 S

Proof

Step Hyp Ref Expression
1 4sq.1 S = n | x y z w n = x 2 + y 2 + z 2 + w 2
2 gzcn A i A
3 2 absvalsq2d A i A 2 = A 2 + A 2
4 gzcn B i B
5 4 absvalsq2d B i B 2 = B 2 + B 2
6 3 5 oveqan12d A i B i A 2 + B 2 = A 2 + A 2 + B 2 + B 2
7 elgz A i A A A
8 7 simp2bi A i A
9 7 simp3bi A i A
10 8 9 jca A i A A
11 elgz B i B B B
12 11 simp2bi B i B
13 11 simp3bi B i B
14 12 13 jca B i B B
15 1 4sqlem3 A A B B A 2 + A 2 + B 2 + B 2 S
16 10 14 15 syl2an A i B i A 2 + A 2 + B 2 + B 2 S
17 6 16 eqeltrd A i B i A 2 + B 2 S