Database
REAL AND COMPLEX NUMBERS
Integer sets
Decimal arithmetic
4t3lem
Next ⟩
4t3e12
Metamath Proof Explorer
Ascii
Unicode
Theorem
4t3lem
Description:
Lemma for
4t3e12
and related theorems.
(Contributed by
Mario Carneiro
, 19-Apr-2015)
Ref
Expression
Hypotheses
4t3lem.1
⊢
A
∈
ℕ
0
4t3lem.2
⊢
B
∈
ℕ
0
4t3lem.3
⊢
C
=
B
+
1
4t3lem.4
⊢
A
⁢
B
=
D
4t3lem.5
⊢
D
+
A
=
E
Assertion
4t3lem
⊢
A
⁢
C
=
E
Proof
Step
Hyp
Ref
Expression
1
4t3lem.1
⊢
A
∈
ℕ
0
2
4t3lem.2
⊢
B
∈
ℕ
0
3
4t3lem.3
⊢
C
=
B
+
1
4
4t3lem.4
⊢
A
⁢
B
=
D
5
4t3lem.5
⊢
D
+
A
=
E
6
3
oveq2i
⊢
A
⁢
C
=
A
⁢
B
+
1
7
1
nn0cni
⊢
A
∈
ℂ
8
2
nn0cni
⊢
B
∈
ℂ
9
ax-1cn
⊢
1
∈
ℂ
10
7
8
9
adddii
⊢
A
⁢
B
+
1
=
A
⁢
B
+
A
⋅
1
11
7
mulid1i
⊢
A
⋅
1
=
A
12
4
11
oveq12i
⊢
A
⁢
B
+
A
⋅
1
=
D
+
A
13
10
12
eqtri
⊢
A
⁢
B
+
1
=
D
+
A
14
13
5
eqtri
⊢
A
⁢
B
+
1
=
E
15
6
14
eqtri
⊢
A
⁢
C
=
E