Metamath Proof Explorer


Theorem 4t3lem

Description: Lemma for 4t3e12 and related theorems. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Hypotheses 4t3lem.1 A 0
4t3lem.2 B 0
4t3lem.3 C = B + 1
4t3lem.4 A B = D
4t3lem.5 D + A = E
Assertion 4t3lem A C = E

Proof

Step Hyp Ref Expression
1 4t3lem.1 A 0
2 4t3lem.2 B 0
3 4t3lem.3 C = B + 1
4 4t3lem.4 A B = D
5 4t3lem.5 D + A = E
6 3 oveq2i A C = A B + 1
7 1 nn0cni A
8 2 nn0cni B
9 ax-1cn 1
10 7 8 9 adddii A B + 1 = A B + A 1
11 7 mulid1i A 1 = A
12 4 11 oveq12i A B + A 1 = D + A
13 10 12 eqtri A B + 1 = D + A
14 13 5 eqtri A B + 1 = E
15 6 14 eqtri A C = E