Metamath Proof Explorer


Theorem 4t4e16

Description: 4 times 4 equals 16. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 4t4e16 4 4 = 16

Proof

Step Hyp Ref Expression
1 4nn0 4 0
2 3nn0 3 0
3 df-4 4 = 3 + 1
4 4t3e12 4 3 = 12
5 1nn0 1 0
6 2nn0 2 0
7 eqid 12 = 12
8 4cn 4
9 2cn 2
10 4p2e6 4 + 2 = 6
11 8 9 10 addcomli 2 + 4 = 6
12 5 6 1 7 11 decaddi 12 + 4 = 16
13 1 2 3 4 12 4t3lem 4 4 = 16