Metamath Proof Explorer


Theorem 5p4e9

Description: 5 + 4 = 9. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion 5p4e9 5 + 4 = 9

Proof

Step Hyp Ref Expression
1 df-4 4 = 3 + 1
2 1 oveq2i 5 + 4 = 5 + 3 + 1
3 5cn 5
4 3cn 3
5 ax-1cn 1
6 3 4 5 addassi 5 + 3 + 1 = 5 + 3 + 1
7 2 6 eqtr4i 5 + 4 = 5 + 3 + 1
8 df-9 9 = 8 + 1
9 5p3e8 5 + 3 = 8
10 9 oveq1i 5 + 3 + 1 = 8 + 1
11 8 10 eqtr4i 9 = 5 + 3 + 1
12 7 11 eqtr4i 5 + 4 = 9