Metamath Proof Explorer
		
		
		
		Description:  5 is a prime number.  (Contributed by Mario Carneiro, 18-Feb-2014)
     (Revised by Mario Carneiro, 20-Apr-2015)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | 5prm |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 5nn |  | 
						
							| 2 |  | 1lt5 |  | 
						
							| 3 |  | 2nn |  | 
						
							| 4 |  | 2nn0 |  | 
						
							| 5 |  | 1nn |  | 
						
							| 6 |  | 2t2e4 |  | 
						
							| 7 | 6 | oveq1i |  | 
						
							| 8 |  | df-5 |  | 
						
							| 9 | 7 8 | eqtr4i |  | 
						
							| 10 |  | 1lt2 |  | 
						
							| 11 | 3 4 5 9 10 | ndvdsi |  | 
						
							| 12 |  | 3nn |  | 
						
							| 13 |  | 1nn0 |  | 
						
							| 14 |  | 3t1e3 |  | 
						
							| 15 | 14 | oveq1i |  | 
						
							| 16 |  | 3p2e5 |  | 
						
							| 17 | 15 16 | eqtri |  | 
						
							| 18 |  | 2lt3 |  | 
						
							| 19 | 12 13 3 17 18 | ndvdsi |  | 
						
							| 20 |  | 5nn0 |  | 
						
							| 21 |  | 5lt10 |  | 
						
							| 22 | 3 20 20 21 | declti |  | 
						
							| 23 | 1 2 11 19 22 | prmlem1 |  |