Metamath Proof Explorer


Theorem 5prm

Description: 5 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 5prm 5

Proof

Step Hyp Ref Expression
1 5nn 5
2 1lt5 1 < 5
3 2nn 2
4 2nn0 2 0
5 1nn 1
6 2t2e4 2 2 = 4
7 6 oveq1i 2 2 + 1 = 4 + 1
8 df-5 5 = 4 + 1
9 7 8 eqtr4i 2 2 + 1 = 5
10 1lt2 1 < 2
11 3 4 5 9 10 ndvdsi ¬ 2 5
12 3nn 3
13 1nn0 1 0
14 3t1e3 3 1 = 3
15 14 oveq1i 3 1 + 2 = 3 + 2
16 3p2e5 3 + 2 = 5
17 15 16 eqtri 3 1 + 2 = 5
18 2lt3 2 < 3
19 12 13 3 17 18 ndvdsi ¬ 3 5
20 5nn0 5 0
21 5lt10 5 < 10
22 3 20 20 21 declti 5 < 25
23 1 2 11 19 22 prmlem1 5