Metamath Proof Explorer
Description: 5 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014)
(Revised by Mario Carneiro, 20-Apr-2015)
|
|
Ref |
Expression |
|
Assertion |
5prm |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
5nn |
|
2 |
|
1lt5 |
|
3 |
|
2nn |
|
4 |
|
2nn0 |
|
5 |
|
1nn |
|
6 |
|
2t2e4 |
|
7 |
6
|
oveq1i |
|
8 |
|
df-5 |
|
9 |
7 8
|
eqtr4i |
|
10 |
|
1lt2 |
|
11 |
3 4 5 9 10
|
ndvdsi |
|
12 |
|
3nn |
|
13 |
|
1nn0 |
|
14 |
|
3t1e3 |
|
15 |
14
|
oveq1i |
|
16 |
|
3p2e5 |
|
17 |
15 16
|
eqtri |
|
18 |
|
2lt3 |
|
19 |
12 13 3 17 18
|
ndvdsi |
|
20 |
|
5nn0 |
|
21 |
|
5lt10 |
|
22 |
3 20 20 21
|
declti |
|
23 |
1 2 11 19 22
|
prmlem1 |
|