Metamath Proof Explorer


Theorem 631prm

Description: 631 is a prime number. (Contributed by Mario Carneiro, 1-Mar-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 631prm 631

Proof

Step Hyp Ref Expression
1 6nn0 6 0
2 3nn0 3 0
3 1 2 deccl 63 0
4 1nn 1
5 3 4 decnncl 631
6 8nn0 8 0
7 4nn0 4 0
8 1nn0 1 0
9 6lt8 6 < 8
10 3lt10 3 < 10
11 1lt10 1 < 10
12 1 6 2 7 8 8 9 10 11 3decltc 631 < 841
13 3nn 3
14 1 13 decnncl 63
15 14 8 8 11 declti 1 < 631
16 0nn0 0 0
17 2cn 2
18 17 mul02i 0 2 = 0
19 1e0p1 1 = 0 + 1
20 3 16 18 19 dec2dvds ¬ 2 631
21 2nn0 2 0
22 21 8 deccl 21 0
23 22 16 deccl 210 0
24 eqid 210 = 210
25 8 dec0h 1 = 01
26 eqid 21 = 21
27 00id 0 + 0 = 0
28 16 dec0h 0 = 00
29 27 28 eqtri 0 + 0 = 00
30 3t2e6 3 2 = 6
31 30 27 oveq12i 3 2 + 0 + 0 = 6 + 0
32 6cn 6
33 32 addid1i 6 + 0 = 6
34 31 33 eqtri 3 2 + 0 + 0 = 6
35 3t1e3 3 1 = 3
36 35 oveq1i 3 1 + 0 = 3 + 0
37 3cn 3
38 37 addid1i 3 + 0 = 3
39 2 dec0h 3 = 03
40 36 38 39 3eqtri 3 1 + 0 = 03
41 21 8 16 16 26 29 2 2 16 34 40 decma2c 3 21 + 0 + 0 = 63
42 37 mul01i 3 0 = 0
43 42 oveq1i 3 0 + 1 = 0 + 1
44 0p1e1 0 + 1 = 1
45 43 44 25 3eqtri 3 0 + 1 = 01
46 22 16 16 8 24 25 2 8 16 41 45 decma2c 3 210 + 1 = 631
47 1lt3 1 < 3
48 13 23 4 46 47 ndvdsi ¬ 3 631
49 1lt5 1 < 5
50 3 4 49 dec5dvds ¬ 5 631
51 7nn 7
52 9nn0 9 0
53 52 16 deccl 90 0
54 eqid 90 = 90
55 7nn0 7 0
56 27 oveq2i 7 9 + 0 + 0 = 7 9 + 0
57 9cn 9
58 7cn 7
59 9t7e63 9 7 = 63
60 57 58 59 mulcomli 7 9 = 63
61 60 oveq1i 7 9 + 0 = 63 + 0
62 3 nn0cni 63
63 62 addid1i 63 + 0 = 63
64 56 61 63 3eqtri 7 9 + 0 + 0 = 63
65 58 mul01i 7 0 = 0
66 65 oveq1i 7 0 + 1 = 0 + 1
67 66 44 25 3eqtri 7 0 + 1 = 01
68 52 16 16 8 54 25 55 8 16 64 67 decma2c 7 90 + 1 = 631
69 1lt7 1 < 7
70 51 53 4 68 69 ndvdsi ¬ 7 631
71 8 4 decnncl 11
72 5nn0 5 0
73 72 55 deccl 57 0
74 4nn 4
75 eqid 57 = 57
76 7 dec0h 4 = 04
77 8 8 deccl 11 0
78 eqid 11 = 11
79 8cn 8
80 79 addid2i 0 + 8 = 8
81 6 dec0h 8 = 08
82 80 81 eqtri 0 + 8 = 08
83 5cn 5
84 83 mulid2i 1 5 = 5
85 84 44 oveq12i 1 5 + 0 + 1 = 5 + 1
86 5p1e6 5 + 1 = 6
87 85 86 eqtri 1 5 + 0 + 1 = 6
88 84 oveq1i 1 5 + 8 = 5 + 8
89 8p5e13 8 + 5 = 13
90 79 83 89 addcomli 5 + 8 = 13
91 88 90 eqtri 1 5 + 8 = 13
92 8 8 16 6 78 82 72 2 8 87 91 decmac 11 5 + 0 + 8 = 63
93 58 mulid2i 1 7 = 7
94 93 44 oveq12i 1 7 + 0 + 1 = 7 + 1
95 7p1e8 7 + 1 = 8
96 94 95 eqtri 1 7 + 0 + 1 = 8
97 93 oveq1i 1 7 + 4 = 7 + 4
98 7p4e11 7 + 4 = 11
99 97 98 eqtri 1 7 + 4 = 11
100 8 8 16 7 78 76 55 8 8 96 99 decmac 11 7 + 4 = 81
101 72 55 16 7 75 76 77 8 6 92 100 decma2c 11 57 + 4 = 631
102 4lt10 4 < 10
103 4 8 7 102 declti 4 < 11
104 71 73 74 101 103 ndvdsi ¬ 11 631
105 8 13 decnncl 13
106 7 6 deccl 48 0
107 eqid 48 = 48
108 55 dec0h 7 = 07
109 8 2 deccl 13 0
110 eqid 13 = 13
111 77 nn0cni 11
112 111 addid2i 0 + 11 = 11
113 4cn 4
114 113 mulid2i 1 4 = 4
115 1p1e2 1 + 1 = 2
116 114 115 oveq12i 1 4 + 1 + 1 = 4 + 2
117 4p2e6 4 + 2 = 6
118 116 117 eqtri 1 4 + 1 + 1 = 6
119 4t3e12 4 3 = 12
120 113 37 119 mulcomli 3 4 = 12
121 2p1e3 2 + 1 = 3
122 8 21 8 120 121 decaddi 3 4 + 1 = 13
123 8 2 8 8 110 112 7 2 8 118 122 decmac 13 4 + 0 + 11 = 63
124 79 mulid2i 1 8 = 8
125 37 addid2i 0 + 3 = 3
126 124 125 oveq12i 1 8 + 0 + 3 = 8 + 3
127 8p3e11 8 + 3 = 11
128 126 127 eqtri 1 8 + 0 + 3 = 11
129 8t3e24 8 3 = 24
130 79 37 129 mulcomli 3 8 = 24
131 58 113 98 addcomli 4 + 7 = 11
132 21 7 55 130 121 8 131 decaddci 3 8 + 7 = 31
133 8 2 16 55 110 108 6 8 2 128 132 decmac 13 8 + 7 = 111
134 7 6 16 55 107 108 109 8 77 123 133 decma2c 13 48 + 7 = 631
135 7lt10 7 < 10
136 4 2 55 135 declti 7 < 13
137 105 106 51 134 136 ndvdsi ¬ 13 631
138 8 51 decnncl 17
139 2 55 deccl 37 0
140 2nn 2
141 eqid 37 = 37
142 21 dec0h 2 = 02
143 8 55 deccl 17 0
144 8 21 deccl 12 0
145 eqid 17 = 17
146 144 nn0cni 12
147 146 addid2i 0 + 12 = 12
148 37 mulid2i 1 3 = 3
149 1p2e3 1 + 2 = 3
150 148 149 oveq12i 1 3 + 1 + 2 = 3 + 3
151 3p3e6 3 + 3 = 6
152 150 151 eqtri 1 3 + 1 + 2 = 6
153 7t3e21 7 3 = 21
154 21 8 21 153 149 decaddi 7 3 + 2 = 23
155 8 55 8 21 145 147 2 2 21 152 154 decmac 17 3 + 0 + 12 = 63
156 83 addid2i 0 + 5 = 5
157 93 156 oveq12i 1 7 + 0 + 5 = 7 + 5
158 7p5e12 7 + 5 = 12
159 157 158 eqtri 1 7 + 0 + 5 = 12
160 7t7e49 7 7 = 49
161 4p1e5 4 + 1 = 5
162 9p2e11 9 + 2 = 11
163 7 52 21 160 161 8 162 decaddci 7 7 + 2 = 51
164 8 55 16 21 145 142 55 8 72 159 163 decmac 17 7 + 2 = 121
165 2 55 16 21 141 142 143 8 144 155 164 decma2c 17 37 + 2 = 631
166 2lt10 2 < 10
167 4 55 21 166 declti 2 < 17
168 138 139 140 165 167 ndvdsi ¬ 17 631
169 9nn 9
170 8 169 decnncl 19
171 2 2 deccl 33 0
172 eqid 33 = 33
173 8 52 deccl 19 0
174 eqid 19 = 19
175 32 addid2i 0 + 6 = 6
176 1 dec0h 6 = 06
177 175 176 eqtri 0 + 6 = 06
178 148 125 oveq12i 1 3 + 0 + 3 = 3 + 3
179 178 151 eqtri 1 3 + 0 + 3 = 6
180 9t3e27 9 3 = 27
181 7p6e13 7 + 6 = 13
182 21 55 1 180 121 2 181 decaddci 9 3 + 6 = 33
183 8 52 16 1 174 177 2 2 2 179 182 decmac 19 3 + 0 + 6 = 63
184 21 55 7 180 121 8 98 decaddci 9 3 + 4 = 31
185 8 52 16 7 174 76 2 8 2 179 184 decmac 19 3 + 4 = 61
186 2 2 16 7 172 76 173 8 1 183 185 decma2c 19 33 + 4 = 631
187 4 52 7 102 declti 4 < 19
188 170 171 74 186 187 ndvdsi ¬ 19 631
189 21 13 decnncl 23
190 21 55 deccl 27 0
191 10nn 10
192 eqid 27 = 27
193 eqid 10 = 10
194 21 2 deccl 23 0
195 8 1 deccl 16 0
196 eqid 23 = 23
197 eqid 16 = 16
198 ax-1cn 1
199 6p1e7 6 + 1 = 7
200 32 198 199 addcomli 1 + 6 = 7
201 16 8 8 1 25 197 44 200 decadd 1 + 16 = 17
202 2t2e4 2 2 = 4
203 202 115 oveq12i 2 2 + 1 + 1 = 4 + 2
204 203 117 eqtri 2 2 + 1 + 1 = 6
205 30 oveq1i 3 2 + 7 = 6 + 7
206 58 32 181 addcomli 6 + 7 = 13
207 205 206 eqtri 3 2 + 7 = 13
208 21 2 8 55 196 201 21 2 8 204 207 decmac 23 2 + 1 + 16 = 63
209 7t2e14 7 2 = 14
210 58 17 209 mulcomli 2 7 = 14
211 8 7 21 210 117 decaddi 2 7 + 2 = 16
212 58 37 153 mulcomli 3 7 = 21
213 55 21 2 196 8 21 211 212 decmul1c 23 7 = 161
214 213 oveq1i 23 7 + 0 = 161 + 0
215 195 8 deccl 161 0
216 215 nn0cni 161
217 216 addid1i 161 + 0 = 161
218 214 217 eqtri 23 7 + 0 = 161
219 21 55 8 16 192 193 194 8 195 208 218 decma2c 23 27 + 10 = 631
220 10pos 0 < 10
221 1lt2 1 < 2
222 8 21 16 2 220 221 decltc 10 < 23
223 189 190 191 219 222 ndvdsi ¬ 23 631
224 5 12 15 20 48 50 70 104 137 168 188 223 prmlem2 631