Metamath Proof Explorer
		
		
		
		Description:  6 is an even number.  (Contributed by AV, 20-Jul-2020)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
				
					 | 
					Assertion | 
					6even | 
					   | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							6nn | 
							   | 
						
						
							| 2 | 
							
								1
							 | 
							nnzi | 
							   | 
						
						
							| 3 | 
							
								
							 | 
							3t2e6 | 
							   | 
						
						
							| 4 | 
							
								3
							 | 
							eqcomi | 
							   | 
						
						
							| 5 | 
							
								4
							 | 
							oveq1i | 
							   | 
						
						
							| 6 | 
							
								
							 | 
							3cn | 
							   | 
						
						
							| 7 | 
							
								
							 | 
							2cn | 
							   | 
						
						
							| 8 | 
							
								
							 | 
							2ne0 | 
							   | 
						
						
							| 9 | 
							
								6 7 8
							 | 
							divcan4i | 
							   | 
						
						
							| 10 | 
							
								5 9
							 | 
							eqtri | 
							   | 
						
						
							| 11 | 
							
								
							 | 
							3z | 
							   | 
						
						
							| 12 | 
							
								10 11
							 | 
							eqeltri | 
							   | 
						
						
							| 13 | 
							
								
							 | 
							iseven | 
							   | 
						
						
							| 14 | 
							
								2 12 13
							 | 
							mpbir2an | 
							   |