Metamath Proof Explorer


Theorem 6gbe

Description: 6 is an even Goldbach number. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion 6gbe 6 GoldbachEven

Proof

Step Hyp Ref Expression
1 6even 6 Even
2 3prm 3
3 3odd 3 Odd
4 gbpart6 6 = 3 + 3
5 3 3 4 3pm3.2i 3 Odd 3 Odd 6 = 3 + 3
6 eleq1 p = 3 p Odd 3 Odd
7 biidd p = 3 q Odd q Odd
8 oveq1 p = 3 p + q = 3 + q
9 8 eqeq2d p = 3 6 = p + q 6 = 3 + q
10 6 7 9 3anbi123d p = 3 p Odd q Odd 6 = p + q 3 Odd q Odd 6 = 3 + q
11 biidd q = 3 3 Odd 3 Odd
12 eleq1 q = 3 q Odd 3 Odd
13 oveq2 q = 3 3 + q = 3 + 3
14 13 eqeq2d q = 3 6 = 3 + q 6 = 3 + 3
15 11 12 14 3anbi123d q = 3 3 Odd q Odd 6 = 3 + q 3 Odd 3 Odd 6 = 3 + 3
16 10 15 rspc2ev 3 3 3 Odd 3 Odd 6 = 3 + 3 p q p Odd q Odd 6 = p + q
17 2 2 5 16 mp3an p q p Odd q Odd 6 = p + q
18 isgbe 6 GoldbachEven 6 Even p q p Odd q Odd 6 = p + q
19 1 17 18 mpbir2an 6 GoldbachEven