Metamath Proof Explorer


Theorem 6gcd4e2

Description: The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: ( 6 gcd 4 ) = ( ( 4 + 2 ) gcd 4 ) = ( 2 gcd 4 ) and ( 2 gcd 4 ) = ( 2 gcd ( 2 + 2 ) ) = ( 2 gcd 2 ) = 2 . (Contributed by AV, 27-Aug-2020)

Ref Expression
Assertion 6gcd4e2 6 gcd 4 = 2

Proof

Step Hyp Ref Expression
1 6nn 6
2 1 nnzi 6
3 4z 4
4 gcdcom 6 4 6 gcd 4 = 4 gcd 6
5 2 3 4 mp2an 6 gcd 4 = 4 gcd 6
6 4cn 4
7 2cn 2
8 4p2e6 4 + 2 = 6
9 6 7 8 addcomli 2 + 4 = 6
10 9 oveq2i 4 gcd 2 + 4 = 4 gcd 6
11 2z 2
12 gcdadd 2 2 2 gcd 2 = 2 gcd 2 + 2
13 11 11 12 mp2an 2 gcd 2 = 2 gcd 2 + 2
14 2p2e4 2 + 2 = 4
15 14 oveq2i 2 gcd 2 + 2 = 2 gcd 4
16 gcdcom 2 4 2 gcd 4 = 4 gcd 2
17 11 3 16 mp2an 2 gcd 4 = 4 gcd 2
18 15 17 eqtri 2 gcd 2 + 2 = 4 gcd 2
19 13 18 eqtri 2 gcd 2 = 4 gcd 2
20 gcdid 2 2 gcd 2 = 2
21 11 20 ax-mp 2 gcd 2 = 2
22 2re 2
23 0le2 0 2
24 absid 2 0 2 2 = 2
25 22 23 24 mp2an 2 = 2
26 21 25 eqtri 2 gcd 2 = 2
27 gcdadd 4 2 4 gcd 2 = 4 gcd 2 + 4
28 3 11 27 mp2an 4 gcd 2 = 4 gcd 2 + 4
29 19 26 28 3eqtr3ri 4 gcd 2 + 4 = 2
30 5 10 29 3eqtr2i 6 gcd 4 = 2