Metamath Proof Explorer


Theorem 6lcm4e12

Description: The least common multiple of six and four is twelve. (Contributed by AV, 27-Aug-2020)

Ref Expression
Assertion 6lcm4e12 6 lcm 4 = 12

Proof

Step Hyp Ref Expression
1 6cn 6
2 4cn 4
3 1 2 mulcli 6 4
4 6nn0 6 0
5 4 nn0zi 6
6 4z 4
7 lcmcl 6 4 6 lcm 4 0
8 7 nn0cnd 6 4 6 lcm 4
9 5 6 8 mp2an 6 lcm 4
10 gcdcl 6 4 6 gcd 4 0
11 10 nn0cnd 6 4 6 gcd 4
12 5 6 11 mp2an 6 gcd 4
13 5 6 pm3.2i 6 4
14 4ne0 4 0
15 14 neii ¬ 4 = 0
16 15 intnan ¬ 6 = 0 4 = 0
17 gcdn0cl 6 4 ¬ 6 = 0 4 = 0 6 gcd 4
18 13 16 17 mp2an 6 gcd 4
19 18 nnne0i 6 gcd 4 0
20 12 19 pm3.2i 6 gcd 4 6 gcd 4 0
21 6nn 6
22 4nn 4
23 21 22 pm3.2i 6 4
24 lcmgcdnn 6 4 6 lcm 4 6 gcd 4 = 6 4
25 23 24 mp1i 6 4 6 lcm 4 6 gcd 4 6 gcd 4 0 6 lcm 4 6 gcd 4 = 6 4
26 25 eqcomd 6 4 6 lcm 4 6 gcd 4 6 gcd 4 0 6 4 = 6 lcm 4 6 gcd 4
27 divmul3 6 4 6 lcm 4 6 gcd 4 6 gcd 4 0 6 4 6 gcd 4 = 6 lcm 4 6 4 = 6 lcm 4 6 gcd 4
28 26 27 mpbird 6 4 6 lcm 4 6 gcd 4 6 gcd 4 0 6 4 6 gcd 4 = 6 lcm 4
29 28 eqcomd 6 4 6 lcm 4 6 gcd 4 6 gcd 4 0 6 lcm 4 = 6 4 6 gcd 4
30 3 9 20 29 mp3an 6 lcm 4 = 6 4 6 gcd 4
31 6gcd4e2 6 gcd 4 = 2
32 31 oveq2i 6 4 6 gcd 4 = 6 4 2
33 2cn 2
34 2ne0 2 0
35 1 2 33 34 divassi 6 4 2 = 6 4 2
36 4d2e2 4 2 = 2
37 36 oveq2i 6 4 2 = 6 2
38 6t2e12 6 2 = 12
39 35 37 38 3eqtri 6 4 2 = 12
40 30 32 39 3eqtri 6 lcm 4 = 12