Metamath Proof Explorer


Theorem 6p2e8

Description: 6 + 2 = 8. (Contributed by NM, 11-May-2004)

Ref Expression
Assertion 6p2e8 6 + 2 = 8

Proof

Step Hyp Ref Expression
1 df-2 2 = 1 + 1
2 1 oveq2i 6 + 2 = 6 + 1 + 1
3 6cn 6
4 ax-1cn 1
5 3 4 4 addassi 6 + 1 + 1 = 6 + 1 + 1
6 2 5 eqtr4i 6 + 2 = 6 + 1 + 1
7 df-7 7 = 6 + 1
8 7 oveq1i 7 + 1 = 6 + 1 + 1
9 6 8 eqtr4i 6 + 2 = 7 + 1
10 df-8 8 = 7 + 1
11 9 10 eqtr4i 6 + 2 = 8