Metamath Proof Explorer


Theorem 6ralbidv

Description: Formula-building rule for restricted universal quantifiers (deduction form.) (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Hypothesis 6ralbidv.1 φψχ
Assertion 6ralbidv φxAyBzCwDtEuFψxAyBzCwDtEuFχ

Proof

Step Hyp Ref Expression
1 6ralbidv.1 φψχ
2 1 2ralbidv φtEuFψtEuFχ
3 2 4ralbidv φxAyBzCwDtEuFψxAyBzCwDtEuFχ