Metamath Proof Explorer


Theorem 6ralbidv

Description: Formula-building rule for restricted universal quantifiers (deduction form.) (Contributed by Scott Fenton, 5-Mar-2025)

Ref Expression
Hypothesis 6ralbidv.1 φ ψ χ
Assertion 6ralbidv φ x A y B z C w D t E u F ψ x A y B z C w D t E u F χ

Proof

Step Hyp Ref Expression
1 6ralbidv.1 φ ψ χ
2 1 2ralbidv φ t E u F ψ t E u F χ
3 2 4ralbidv φ x A y B z C w D t E u F ψ x A y B z C w D t E u F χ