Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Number theory (extension 2)
Goldbach's conjectures
7gbow
Next ⟩
8gbe
Metamath Proof Explorer
Ascii
Unicode
Theorem
7gbow
Description:
7 is a weak odd Goldbach number.
(Contributed by
AV
, 20-Jul-2020)
Ref
Expression
Assertion
7gbow
⊢
7
∈
GoldbachOddW
Proof
Step
Hyp
Ref
Expression
1
7odd
⊢
7
∈
Odd
2
2prm
⊢
2
∈
ℙ
3
3prm
⊢
3
∈
ℙ
4
gbpart7
⊢
7
=
2
+
2
+
3
5
oveq2
⊢
r
=
3
→
2
+
2
+
r
=
2
+
2
+
3
6
5
rspceeqv
⊢
3
∈
ℙ
∧
7
=
2
+
2
+
3
→
∃
r
∈
ℙ
7
=
2
+
2
+
r
7
3
4
6
mp2an
⊢
∃
r
∈
ℙ
7
=
2
+
2
+
r
8
oveq1
⊢
p
=
2
→
p
+
q
=
2
+
q
9
8
oveq1d
⊢
p
=
2
→
p
+
q
+
r
=
2
+
q
+
r
10
9
eqeq2d
⊢
p
=
2
→
7
=
p
+
q
+
r
↔
7
=
2
+
q
+
r
11
10
rexbidv
⊢
p
=
2
→
∃
r
∈
ℙ
7
=
p
+
q
+
r
↔
∃
r
∈
ℙ
7
=
2
+
q
+
r
12
oveq2
⊢
q
=
2
→
2
+
q
=
2
+
2
13
12
oveq1d
⊢
q
=
2
→
2
+
q
+
r
=
2
+
2
+
r
14
13
eqeq2d
⊢
q
=
2
→
7
=
2
+
q
+
r
↔
7
=
2
+
2
+
r
15
14
rexbidv
⊢
q
=
2
→
∃
r
∈
ℙ
7
=
2
+
q
+
r
↔
∃
r
∈
ℙ
7
=
2
+
2
+
r
16
11
15
rspc2ev
⊢
2
∈
ℙ
∧
2
∈
ℙ
∧
∃
r
∈
ℙ
7
=
2
+
2
+
r
→
∃
p
∈
ℙ
∃
q
∈
ℙ
∃
r
∈
ℙ
7
=
p
+
q
+
r
17
2
2
7
16
mp3an
⊢
∃
p
∈
ℙ
∃
q
∈
ℙ
∃
r
∈
ℙ
7
=
p
+
q
+
r
18
isgbow
⊢
7
∈
GoldbachOddW
↔
7
∈
Odd
∧
∃
p
∈
ℙ
∃
q
∈
ℙ
∃
r
∈
ℙ
7
=
p
+
q
+
r
19
1
17
18
mpbir2an
⊢
7
∈
GoldbachOddW