Metamath Proof Explorer


Theorem 7gbow

Description: 7 is a weak odd Goldbach number. (Contributed by AV, 20-Jul-2020)

Ref Expression
Assertion 7gbow 7 GoldbachOddW

Proof

Step Hyp Ref Expression
1 7odd 7 Odd
2 2prm 2
3 3prm 3
4 gbpart7 7 = 2 + 2 + 3
5 oveq2 r = 3 2 + 2 + r = 2 + 2 + 3
6 5 rspceeqv 3 7 = 2 + 2 + 3 r 7 = 2 + 2 + r
7 3 4 6 mp2an r 7 = 2 + 2 + r
8 oveq1 p = 2 p + q = 2 + q
9 8 oveq1d p = 2 p + q + r = 2 + q + r
10 9 eqeq2d p = 2 7 = p + q + r 7 = 2 + q + r
11 10 rexbidv p = 2 r 7 = p + q + r r 7 = 2 + q + r
12 oveq2 q = 2 2 + q = 2 + 2
13 12 oveq1d q = 2 2 + q + r = 2 + 2 + r
14 13 eqeq2d q = 2 7 = 2 + q + r 7 = 2 + 2 + r
15 14 rexbidv q = 2 r 7 = 2 + q + r r 7 = 2 + 2 + r
16 11 15 rspc2ev 2 2 r 7 = 2 + 2 + r p q r 7 = p + q + r
17 2 2 7 16 mp3an p q r 7 = p + q + r
18 isgbow 7 GoldbachOddW 7 Odd p q r 7 = p + q + r
19 1 17 18 mpbir2an 7 GoldbachOddW