Metamath Proof Explorer


Theorem 7p7e14

Description: 7 + 7 = 14. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 7p7e14 7 + 7 = 14

Proof

Step Hyp Ref Expression
1 7nn0 7 0
2 6nn0 6 0
3 3nn0 3 0
4 df-7 7 = 6 + 1
5 df-4 4 = 3 + 1
6 7p6e13 7 + 6 = 13
7 1 2 3 4 5 6 6p5lem 7 + 7 = 14