Metamath Proof Explorer
Description: 7 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014)
(Revised by Mario Carneiro, 20-Apr-2015)
|
|
Ref |
Expression |
|
Assertion |
7prm |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
7nn |
|
2 |
|
1lt7 |
|
3 |
|
2nn |
|
4 |
|
3nn0 |
|
5 |
|
1nn |
|
6 |
|
3cn |
|
7 |
|
2cn |
|
8 |
|
3t2e6 |
|
9 |
6 7 8
|
mulcomli |
|
10 |
9
|
oveq1i |
|
11 |
|
df-7 |
|
12 |
10 11
|
eqtr4i |
|
13 |
|
1lt2 |
|
14 |
3 4 5 12 13
|
ndvdsi |
|
15 |
|
3nn |
|
16 |
|
2nn0 |
|
17 |
8
|
oveq1i |
|
18 |
17 11
|
eqtr4i |
|
19 |
|
1lt3 |
|
20 |
15 16 5 18 19
|
ndvdsi |
|
21 |
|
5nn0 |
|
22 |
|
7nn0 |
|
23 |
|
7lt10 |
|
24 |
3 21 22 23
|
declti |
|
25 |
1 2 14 20 24
|
prmlem1 |
|