Metamath Proof Explorer


Theorem 7prm

Description: 7 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 7prm 7

Proof

Step Hyp Ref Expression
1 7nn 7
2 1lt7 1 < 7
3 2nn 2
4 3nn0 3 0
5 1nn 1
6 3cn 3
7 2cn 2
8 3t2e6 3 2 = 6
9 6 7 8 mulcomli 2 3 = 6
10 9 oveq1i 2 3 + 1 = 6 + 1
11 df-7 7 = 6 + 1
12 10 11 eqtr4i 2 3 + 1 = 7
13 1lt2 1 < 2
14 3 4 5 12 13 ndvdsi ¬ 2 7
15 3nn 3
16 2nn0 2 0
17 8 oveq1i 3 2 + 1 = 6 + 1
18 17 11 eqtr4i 3 2 + 1 = 7
19 1lt3 1 < 3
20 15 16 5 18 19 ndvdsi ¬ 3 7
21 5nn0 5 0
22 7nn0 7 0
23 7lt10 7 < 10
24 3 21 22 23 declti 7 < 25
25 1 2 14 20 24 prmlem1 7