Metamath Proof Explorer


Theorem 7t7e49

Description: 7 times 7 equals 49. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 7t7e49 7 7 = 49

Proof

Step Hyp Ref Expression
1 7nn0 7 0
2 6nn0 6 0
3 df-7 7 = 6 + 1
4 7t6e42 7 6 = 42
5 4nn0 4 0
6 2nn0 2 0
7 eqid 42 = 42
8 7cn 7
9 2cn 2
10 7p2e9 7 + 2 = 9
11 8 9 10 addcomli 2 + 7 = 9
12 5 6 1 7 11 decaddi 42 + 7 = 49
13 1 2 3 4 12 4t3lem 7 7 = 49