Metamath Proof Explorer


Theorem 83prm

Description: 83 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 83prm 83

Proof

Step Hyp Ref Expression
1 8nn0 8 0
2 3nn 3
3 1 2 decnncl 83
4 4nn0 4 0
5 1 4 deccl 84 0
6 3nn0 3 0
7 1nn0 1 0
8 3lt10 3 < 10
9 8nn 8
10 8lt10 8 < 10
11 9 4 1 10 declti 8 < 84
12 1 5 6 7 8 11 decltc 83 < 841
13 1lt10 1 < 10
14 9 6 7 13 declti 1 < 83
15 2cn 2
16 15 mulid2i 1 2 = 2
17 df-3 3 = 2 + 1
18 1 7 16 17 dec2dvds ¬ 2 83
19 2nn0 2 0
20 7nn0 7 0
21 19 20 deccl 27 0
22 2nn 2
23 0nn0 0 0
24 eqid 27 = 27
25 19 dec0h 2 = 02
26 3t2e6 3 2 = 6
27 15 addid2i 0 + 2 = 2
28 26 27 oveq12i 3 2 + 0 + 2 = 6 + 2
29 6p2e8 6 + 2 = 8
30 28 29 eqtri 3 2 + 0 + 2 = 8
31 20 nn0cni 7
32 3cn 3
33 7t3e21 7 3 = 21
34 31 32 33 mulcomli 3 7 = 21
35 1p2e3 1 + 2 = 3
36 19 7 19 34 35 decaddi 3 7 + 2 = 23
37 19 20 23 19 24 25 6 6 19 30 36 decma2c 3 27 + 2 = 83
38 2lt3 2 < 3
39 2 21 22 37 38 ndvdsi ¬ 3 83
40 3lt5 3 < 5
41 1 2 40 dec5dvds ¬ 5 83
42 7nn 7
43 7 7 deccl 11 0
44 6nn 6
45 44 nnnn0i 6 0
46 eqid 11 = 11
47 45 dec0h 6 = 06
48 31 mulid1i 7 1 = 7
49 ax-1cn 1
50 49 addid2i 0 + 1 = 1
51 48 50 oveq12i 7 1 + 0 + 1 = 7 + 1
52 7p1e8 7 + 1 = 8
53 51 52 eqtri 7 1 + 0 + 1 = 8
54 48 oveq1i 7 1 + 6 = 7 + 6
55 7p6e13 7 + 6 = 13
56 54 55 eqtri 7 1 + 6 = 13
57 7 7 23 45 46 47 20 6 7 53 56 decma2c 7 11 + 6 = 83
58 6lt7 6 < 7
59 42 43 44 57 58 ndvdsi ¬ 7 83
60 1nn 1
61 7 60 decnncl 11
62 61 nncni 11
63 62 31 mulcomi 11 7 = 7 11
64 63 oveq1i 11 7 + 6 = 7 11 + 6
65 64 57 eqtri 11 7 + 6 = 83
66 6lt10 6 < 10
67 60 7 45 66 declti 6 < 11
68 61 20 44 65 67 ndvdsi ¬ 11 83
69 7 2 decnncl 13
70 5nn 5
71 70 nnnn0i 5 0
72 eqid 13 = 13
73 71 dec0h 5 = 05
74 6cn 6
75 74 mulid2i 1 6 = 6
76 75 27 oveq12i 1 6 + 0 + 2 = 6 + 2
77 76 29 eqtri 1 6 + 0 + 2 = 8
78 6t3e18 6 3 = 18
79 74 32 78 mulcomli 3 6 = 18
80 1p1e2 1 + 1 = 2
81 8p5e13 8 + 5 = 13
82 7 1 71 79 80 6 81 decaddci 3 6 + 5 = 23
83 7 6 23 71 72 73 45 6 19 77 82 decmac 13 6 + 5 = 83
84 5lt10 5 < 10
85 60 6 71 84 declti 5 < 13
86 69 45 70 83 85 ndvdsi ¬ 13 83
87 7 42 decnncl 17
88 7 70 decnncl 15
89 eqid 17 = 17
90 eqid 15 = 15
91 4 nn0cni 4
92 91 mulid2i 1 4 = 4
93 3p1e4 3 + 1 = 4
94 32 49 93 addcomli 1 + 3 = 4
95 92 94 oveq12i 1 4 + 1 + 3 = 4 + 4
96 4p4e8 4 + 4 = 8
97 95 96 eqtri 1 4 + 1 + 3 = 8
98 7t4e28 7 4 = 28
99 2p1e3 2 + 1 = 3
100 19 1 71 98 99 6 81 decaddci 7 4 + 5 = 33
101 7 20 7 71 89 90 4 6 6 97 100 decmac 17 4 + 15 = 83
102 5lt7 5 < 7
103 7 71 42 102 declt 15 < 17
104 87 4 88 101 103 ndvdsi ¬ 17 83
105 9nn 9
106 7 105 decnncl 19
107 9nn0 9 0
108 eqid 19 = 19
109 20 dec0h 7 = 07
110 91 addid2i 0 + 4 = 4
111 92 110 oveq12i 1 4 + 0 + 4 = 4 + 4
112 111 96 eqtri 1 4 + 0 + 4 = 8
113 9t4e36 9 4 = 36
114 31 74 55 addcomli 6 + 7 = 13
115 6 45 20 113 93 6 114 decaddci 9 4 + 7 = 43
116 7 107 23 20 108 109 4 6 4 112 115 decmac 19 4 + 7 = 83
117 7lt10 7 < 10
118 60 107 20 117 declti 7 < 19
119 106 4 42 116 118 ndvdsi ¬ 19 83
120 19 2 decnncl 23
121 4nn 4
122 7 121 decnncl 14
123 eqid 23 = 23
124 eqid 14 = 14
125 32 15 26 mulcomli 2 3 = 6
126 125 80 oveq12i 2 3 + 1 + 1 = 6 + 2
127 126 29 eqtri 2 3 + 1 + 1 = 8
128 3t3e9 3 3 = 9
129 128 oveq1i 3 3 + 4 = 9 + 4
130 9p4e13 9 + 4 = 13
131 129 130 eqtri 3 3 + 4 = 13
132 19 6 7 4 123 124 6 6 7 127 131 decmac 23 3 + 14 = 83
133 4lt10 4 < 10
134 1lt2 1 < 2
135 7 19 4 6 133 134 decltc 14 < 23
136 120 6 122 132 135 ndvdsi ¬ 23 83
137 3 12 14 18 39 41 59 68 86 104 119 136 prmlem2 83