Metamath Proof Explorer


Theorem 8th4div3

Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007)

Ref Expression
Assertion 8th4div3 1 8 4 3 = 1 6

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 8re 8
3 2 recni 8
4 4cn 4
5 3cn 3
6 8pos 0 < 8
7 2 6 gt0ne0ii 8 0
8 3ne0 3 0
9 1 3 4 5 7 8 divmuldivi 1 8 4 3 = 1 4 8 3
10 1 4 mulcomi 1 4 = 4 1
11 2cn 2
12 4 11 5 mul32i 4 2 3 = 4 3 2
13 4t2e8 4 2 = 8
14 13 oveq1i 4 2 3 = 8 3
15 12 14 eqtr3i 4 3 2 = 8 3
16 4 5 11 mulassi 4 3 2 = 4 3 2
17 15 16 eqtr3i 8 3 = 4 3 2
18 3t2e6 3 2 = 6
19 18 oveq2i 4 3 2 = 4 6
20 17 19 eqtri 8 3 = 4 6
21 10 20 oveq12i 1 4 8 3 = 4 1 4 6
22 9 21 eqtri 1 8 4 3 = 4 1 4 6
23 6re 6
24 23 recni 6
25 6pos 0 < 6
26 23 25 gt0ne0ii 6 0
27 4ne0 4 0
28 divcan5 1 6 6 0 4 4 0 4 1 4 6 = 1 6
29 1 28 mp3an1 6 6 0 4 4 0 4 1 4 6 = 1 6
30 24 26 4 27 29 mp4an 4 1 4 6 = 1 6
31 22 30 eqtri 1 8 4 3 = 1 6