Metamath Proof Explorer


Theorem 9gbo

Description: 9 is an odd Goldbach number. (Contributed by AV, 26-Jul-2020)

Ref Expression
Assertion 9gbo 9GoldbachOdd

Proof

Step Hyp Ref Expression
1 df-9 9=8+1
2 8even 8Even
3 evenp1odd 8Even8+1Odd
4 2 3 ax-mp 8+1Odd
5 1 4 eqeltri 9Odd
6 3prm 3
7 3odd 3Odd
8 7 7 7 3pm3.2i 3Odd3Odd3Odd
9 gbpart9 9=3+3+3
10 8 9 pm3.2i 3Odd3Odd3Odd9=3+3+3
11 eleq1 r=3rOdd3Odd
12 11 3anbi3d r=33Odd3OddrOdd3Odd3Odd3Odd
13 oveq2 r=33+3+r=3+3+3
14 13 eqeq2d r=39=3+3+r9=3+3+3
15 12 14 anbi12d r=33Odd3OddrOdd9=3+3+r3Odd3Odd3Odd9=3+3+3
16 15 rspcev 33Odd3Odd3Odd9=3+3+3r3Odd3OddrOdd9=3+3+r
17 6 10 16 mp2an r3Odd3OddrOdd9=3+3+r
18 eleq1 p=3pOdd3Odd
19 18 3anbi1d p=3pOddqOddrOdd3OddqOddrOdd
20 oveq1 p=3p+q=3+q
21 20 oveq1d p=3p+q+r=3+q+r
22 21 eqeq2d p=39=p+q+r9=3+q+r
23 19 22 anbi12d p=3pOddqOddrOdd9=p+q+r3OddqOddrOdd9=3+q+r
24 23 rexbidv p=3rpOddqOddrOdd9=p+q+rr3OddqOddrOdd9=3+q+r
25 eleq1 q=3qOdd3Odd
26 25 3anbi2d q=33OddqOddrOdd3Odd3OddrOdd
27 oveq2 q=33+q=3+3
28 27 oveq1d q=33+q+r=3+3+r
29 28 eqeq2d q=39=3+q+r9=3+3+r
30 26 29 anbi12d q=33OddqOddrOdd9=3+q+r3Odd3OddrOdd9=3+3+r
31 30 rexbidv q=3r3OddqOddrOdd9=3+q+rr3Odd3OddrOdd9=3+3+r
32 24 31 rspc2ev 33r3Odd3OddrOdd9=3+3+rpqrpOddqOddrOdd9=p+q+r
33 6 6 17 32 mp3an pqrpOddqOddrOdd9=p+q+r
34 isgbo 9GoldbachOdd9OddpqrpOddqOddrOdd9=p+q+r
35 5 33 34 mpbir2an 9GoldbachOdd