Metamath Proof Explorer


Theorem 9t11e99

Description: 9 times 11 equals 99. (Contributed by AV, 14-Jun-2021) (Revised by AV, 6-Sep-2021)

Ref Expression
Assertion 9t11e99 9 11 = 99

Proof

Step Hyp Ref Expression
1 9cn 9
2 10nn0 10 0
3 2 nn0cni 10
4 ax-1cn 1
5 3 4 mulcli 10 1
6 1 5 4 adddii 9 10 1 + 1 = 9 10 1 + 9 1
7 3 mulid1i 10 1 = 10
8 7 oveq2i 9 10 1 = 9 10
9 1 3 mulcomi 9 10 = 10 9
10 8 9 eqtri 9 10 1 = 10 9
11 1 mulid1i 9 1 = 9
12 10 11 oveq12i 9 10 1 + 9 1 = 10 9 + 9
13 6 12 eqtri 9 10 1 + 1 = 10 9 + 9
14 dfdec10 11 = 10 1 + 1
15 14 oveq2i 9 11 = 9 10 1 + 1
16 dfdec10 99 = 10 9 + 9
17 13 15 16 3eqtr4i 9 11 = 99