Metamath Proof Explorer


Theorem 9t9e81

Description: 9 times 9 equals 81. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Assertion 9t9e81 9 9 = 81

Proof

Step Hyp Ref Expression
1 9nn0 9 0
2 8nn0 8 0
3 df-9 9 = 8 + 1
4 9t8e72 9 8 = 72
5 7nn0 7 0
6 2nn0 2 0
7 eqid 72 = 72
8 7p1e8 7 + 1 = 8
9 1nn0 1 0
10 9cn 9
11 2cn 2
12 9p2e11 9 + 2 = 11
13 10 11 12 addcomli 2 + 9 = 11
14 5 6 1 7 8 9 13 decaddci 72 + 9 = 81
15 1 2 3 4 14 4t3lem 9 9 = 81