Metamath Proof Explorer


Theorem a2and

Description: Deduction distributing a conjunction as embedded antecedent. (Contributed by AV, 25-Oct-2019) (Proof shortened by Wolf Lammen, 19-Jan-2020)

Ref Expression
Hypotheses a2and.1 φ ψ ρ τ θ
a2and.2 φ ψ ρ χ
Assertion a2and φ ψ χ τ ψ ρ θ

Proof

Step Hyp Ref Expression
1 a2and.1 φ ψ ρ τ θ
2 a2and.2 φ ψ ρ χ
3 2 expd φ ψ ρ χ
4 3 imdistand φ ψ ρ ψ χ
5 imim1 ψ χ τ τ θ ψ χ θ
6 5 com3l τ θ ψ χ ψ χ τ θ
7 1 4 6 syl6c φ ψ ρ ψ χ τ θ
8 7 com23 φ ψ χ τ ψ ρ θ