| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aalioulem2.a |  | 
						
							| 2 |  | aalioulem2.b |  | 
						
							| 3 |  | aalioulem2.c |  | 
						
							| 4 |  | aalioulem2.d |  | 
						
							| 5 |  | aalioulem3.e |  | 
						
							| 6 | 1 2 3 4 5 | aalioulem6 |  | 
						
							| 7 |  | rphalfcl |  | 
						
							| 8 | 7 | adantl |  | 
						
							| 9 | 7 | ad2antlr |  | 
						
							| 10 |  | nnrp |  | 
						
							| 11 | 10 | ad2antll |  | 
						
							| 12 | 3 | nnzd |  | 
						
							| 13 | 12 | ad2antrr |  | 
						
							| 14 | 11 13 | rpexpcld |  | 
						
							| 15 | 9 14 | rpdivcld |  | 
						
							| 16 | 15 | rpred |  | 
						
							| 17 |  | simplr |  | 
						
							| 18 | 17 14 | rpdivcld |  | 
						
							| 19 | 18 | rpred |  | 
						
							| 20 | 4 | adantr |  | 
						
							| 21 |  | znq |  | 
						
							| 22 |  | qre |  | 
						
							| 23 | 21 22 | syl |  | 
						
							| 24 |  | resubcl |  | 
						
							| 25 | 20 23 24 | syl2an |  | 
						
							| 26 | 25 | recnd |  | 
						
							| 27 | 26 | abscld |  | 
						
							| 28 | 16 19 27 | 3jca |  | 
						
							| 29 | 9 | rpred |  | 
						
							| 30 |  | rpre |  | 
						
							| 31 | 30 | ad2antlr |  | 
						
							| 32 |  | rphalflt |  | 
						
							| 33 | 32 | ad2antlr |  | 
						
							| 34 | 29 31 14 33 | ltdiv1dd |  | 
						
							| 35 | 34 | anim1i |  | 
						
							| 36 | 35 | ex |  | 
						
							| 37 |  | ltletr |  | 
						
							| 38 | 28 36 37 | sylsyld |  | 
						
							| 39 | 38 | orim2d |  | 
						
							| 40 | 39 | ralimdvva |  | 
						
							| 41 |  | oveq1 |  | 
						
							| 42 | 41 | breq1d |  | 
						
							| 43 | 42 | orbi2d |  | 
						
							| 44 | 43 | 2ralbidv |  | 
						
							| 45 | 44 | rspcev |  | 
						
							| 46 | 8 40 45 | syl6an |  | 
						
							| 47 | 46 | rexlimdva |  | 
						
							| 48 | 6 47 | mpd |  |