Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
|
2 |
|
aaliou2 |
|
3 |
1 2
|
sylbir |
|
4 |
|
1nn |
|
5 |
|
aacn |
|
6 |
5
|
adantr |
|
7 |
6
|
imcld |
|
8 |
7
|
recnd |
|
9 |
|
reim0b |
|
10 |
5 9
|
syl |
|
11 |
10
|
necon3bbid |
|
12 |
11
|
biimpa |
|
13 |
8 12
|
absrpcld |
|
14 |
13
|
rphalfcld |
|
15 |
14
|
adantr |
|
16 |
|
1nn0 |
|
17 |
|
nnexpcl |
|
18 |
16 17
|
mpan2 |
|
19 |
18
|
ad2antll |
|
20 |
19
|
nnrpd |
|
21 |
15 20
|
rpdivcld |
|
22 |
21
|
rpred |
|
23 |
15
|
rpred |
|
24 |
6
|
adantr |
|
25 |
|
znq |
|
26 |
25
|
adantl |
|
27 |
|
qre |
|
28 |
26 27
|
syl |
|
29 |
28
|
recnd |
|
30 |
24 29
|
subcld |
|
31 |
30
|
abscld |
|
32 |
19
|
nnge1d |
|
33 |
|
1rp |
|
34 |
|
rpregt0 |
|
35 |
33 34
|
mp1i |
|
36 |
20
|
rpregt0d |
|
37 |
15
|
rpregt0d |
|
38 |
|
lediv2 |
|
39 |
35 36 37 38
|
syl3anc |
|
40 |
32 39
|
mpbid |
|
41 |
15
|
rpcnd |
|
42 |
41
|
div1d |
|
43 |
40 42
|
breqtrd |
|
44 |
13
|
adantr |
|
45 |
44
|
rpred |
|
46 |
|
rphalflt |
|
47 |
44 46
|
syl |
|
48 |
24 29
|
imsubd |
|
49 |
28
|
reim0d |
|
50 |
49
|
oveq2d |
|
51 |
8
|
adantr |
|
52 |
51
|
subid1d |
|
53 |
48 50 52
|
3eqtrd |
|
54 |
53
|
fveq2d |
|
55 |
|
absimle |
|
56 |
30 55
|
syl |
|
57 |
54 56
|
eqbrtrrd |
|
58 |
23 45 31 47 57
|
ltletrd |
|
59 |
22 23 31 43 58
|
lelttrd |
|
60 |
59
|
olcd |
|
61 |
60
|
ralrimivva |
|
62 |
|
oveq2 |
|
63 |
62
|
oveq2d |
|
64 |
63
|
breq1d |
|
65 |
64
|
orbi2d |
|
66 |
65
|
2ralbidv |
|
67 |
|
oveq1 |
|
68 |
67
|
breq1d |
|
69 |
68
|
orbi2d |
|
70 |
69
|
2ralbidv |
|
71 |
66 70
|
rspc2ev |
|
72 |
4 14 61 71
|
mp3an2i |
|
73 |
3 72
|
pm2.61dan |
|