Metamath Proof Explorer


Theorem aaliou3lem1

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypothesis aaliou3lem.a G = c A 2 A ! 1 2 c A
Assertion aaliou3lem1 A B A G B

Proof

Step Hyp Ref Expression
1 aaliou3lem.a G = c A 2 A ! 1 2 c A
2 oveq1 c = B c A = B A
3 2 oveq2d c = B 1 2 c A = 1 2 B A
4 3 oveq2d c = B 2 A ! 1 2 c A = 2 A ! 1 2 B A
5 ovex 2 A ! 1 2 B A V
6 4 1 5 fvmpt B A G B = 2 A ! 1 2 B A
7 6 adantl A B A G B = 2 A ! 1 2 B A
8 2rp 2 +
9 simpl A B A A
10 9 nnnn0d A B A A 0
11 10 faccld A B A A !
12 11 nnzd A B A A !
13 12 znegcld A B A A !
14 rpexpcl 2 + A ! 2 A ! +
15 8 13 14 sylancr A B A 2 A ! +
16 halfre 1 2
17 halfgt0 0 < 1 2
18 16 17 elrpii 1 2 +
19 eluzelz B A B
20 nnz A A
21 zsubcl B A B A
22 19 20 21 syl2anr A B A B A
23 rpexpcl 1 2 + B A 1 2 B A +
24 18 22 23 sylancr A B A 1 2 B A +
25 15 24 rpmulcld A B A 2 A ! 1 2 B A +
26 25 rpred A B A 2 A ! 1 2 B A
27 7 26 eqeltrd A B A G B