Metamath Proof Explorer


Theorem aaliou3lem3

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aaliou3lem.a G = c A 2 A ! 1 2 c A
aaliou3lem.b F = a 2 a !
Assertion aaliou3lem3 A seq A + F dom b A F b + b A F b 2 2 A !

Proof

Step Hyp Ref Expression
1 aaliou3lem.a G = c A 2 A ! 1 2 c A
2 aaliou3lem.b F = a 2 a !
3 eqid A = A
4 nnz A A
5 uzid A A A
6 4 5 syl A A A
7 1 aaliou3lem1 A b A G b
8 1 2 aaliou3lem2 A b A F b 0 G b
9 0xr 0 *
10 elioc2 0 * G b F b 0 G b F b 0 < F b F b G b
11 9 7 10 sylancr A b A F b 0 G b F b 0 < F b F b G b
12 8 11 mpbid A b A F b 0 < F b F b G b
13 12 simp1d A b A F b
14 halfcn 1 2
15 14 a1i A 1 2
16 halfre 1 2
17 halfgt0 0 < 1 2
18 16 17 elrpii 1 2 +
19 rprege0 1 2 + 1 2 0 1 2
20 absid 1 2 0 1 2 1 2 = 1 2
21 18 19 20 mp2b 1 2 = 1 2
22 halflt1 1 2 < 1
23 21 22 eqbrtri 1 2 < 1
24 23 a1i A 1 2 < 1
25 2rp 2 +
26 nnnn0 A A 0
27 26 faccld A A !
28 27 nnzd A A !
29 28 znegcld A A !
30 rpexpcl 2 + A ! 2 A ! +
31 25 29 30 sylancr A 2 A ! +
32 31 rpcnd A 2 A !
33 4 15 24 32 1 geolim3 A seq A + G 2 A ! 1 1 2
34 seqex seq A + G V
35 ovex 2 A ! 1 1 2 V
36 34 35 breldm seq A + G 2 A ! 1 1 2 seq A + G dom
37 33 36 syl A seq A + G dom
38 12 simp2d A b A 0 < F b
39 13 38 elrpd A b A F b +
40 39 rpge0d A b A 0 F b
41 12 simp3d A b A F b G b
42 3 6 7 13 37 40 41 cvgcmp A seq A + F dom
43 eqidd A b A F b = F b
44 3 3 6 43 39 42 isumrpcl A b A F b +
45 eqidd A b A G b = G b
46 3 4 43 13 45 7 41 42 37 isumle A b A F b b A G b
47 7 recnd A b A G b
48 3 4 45 47 33 isumclim A b A G b = 2 A ! 1 1 2
49 1mhlfehlf 1 1 2 = 1 2
50 49 oveq2i 2 A ! 1 1 2 = 2 A ! 1 2
51 2cn 2
52 mulcl 2 A ! 2 2 A ! 2
53 32 51 52 sylancl A 2 A ! 2
54 53 div1d A 2 A ! 2 1 = 2 A ! 2
55 1rp 1 +
56 rpcnne0 1 + 1 1 0
57 55 56 ax-mp 1 1 0
58 2cnne0 2 2 0
59 divdiv2 2 A ! 1 1 0 2 2 0 2 A ! 1 2 = 2 A ! 2 1
60 57 58 59 mp3an23 2 A ! 2 A ! 1 2 = 2 A ! 2 1
61 32 60 syl A 2 A ! 1 2 = 2 A ! 2 1
62 mulcom 2 2 A ! 2 2 A ! = 2 A ! 2
63 51 32 62 sylancr A 2 2 A ! = 2 A ! 2
64 54 61 63 3eqtr4d A 2 A ! 1 2 = 2 2 A !
65 50 64 syl5eq A 2 A ! 1 1 2 = 2 2 A !
66 48 65 eqtrd A b A G b = 2 2 A !
67 46 66 breqtrd A b A F b 2 2 A !
68 42 44 67 3jca A seq A + F dom b A F b + b A F b 2 2 A !