Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Liouville's approximation theorem
aaliou3lem4
Next ⟩
aaliou3lem5
Metamath Proof Explorer
Ascii
Unicode
Theorem
aaliou3lem4
Description:
Lemma for
aaliou3
.
(Contributed by
Stefan O'Rear
, 16-Nov-2014)
Ref
Expression
Hypotheses
aaliou3lem.c
⊢
F
=
a
∈
ℕ
⟼
2
−
a
!
aaliou3lem.d
⊢
L
=
∑
b
∈
ℕ
F
⁡
b
aaliou3lem.e
⊢
H
=
c
∈
ℕ
⟼
∑
b
=
1
c
F
⁡
b
Assertion
aaliou3lem4
⊢
L
∈
ℝ
Proof
Step
Hyp
Ref
Expression
1
aaliou3lem.c
⊢
F
=
a
∈
ℕ
⟼
2
−
a
!
2
aaliou3lem.d
⊢
L
=
∑
b
∈
ℕ
F
⁡
b
3
aaliou3lem.e
⊢
H
=
c
∈
ℕ
⟼
∑
b
=
1
c
F
⁡
b
4
nnuz
⊢
ℕ
=
ℤ
≥
1
5
4
sumeq1i
⊢
∑
b
∈
ℕ
F
⁡
b
=
∑
b
∈
ℤ
≥
1
F
⁡
b
6
2
5
eqtri
⊢
L
=
∑
b
∈
ℤ
≥
1
F
⁡
b
7
1nn
⊢
1
∈
ℕ
8
eqid
⊢
c
∈
ℤ
≥
1
⟼
2
−
1
!
⁢
1
2
c
−
1
=
c
∈
ℤ
≥
1
⟼
2
−
1
!
⁢
1
2
c
−
1
9
8
1
aaliou3lem3
⊢
1
∈
ℕ
→
seq
1
+
F
∈
dom
⁡
⇝
∧
∑
b
∈
ℤ
≥
1
F
⁡
b
∈
ℝ
+
∧
∑
b
∈
ℤ
≥
1
F
⁡
b
≤
2
⁢
2
−
1
!
10
9
simp2d
⊢
1
∈
ℕ
→
∑
b
∈
ℤ
≥
1
F
⁡
b
∈
ℝ
+
11
rpre
⊢
∑
b
∈
ℤ
≥
1
F
⁡
b
∈
ℝ
+
→
∑
b
∈
ℤ
≥
1
F
⁡
b
∈
ℝ
12
7
10
11
mp2b
⊢
∑
b
∈
ℤ
≥
1
F
⁡
b
∈
ℝ
13
6
12
eqeltri
⊢
L
∈
ℝ