Metamath Proof Explorer


Theorem aaliou3lem4

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aaliou3lem.c F = a 2 a !
aaliou3lem.d L = b F b
aaliou3lem.e H = c b = 1 c F b
Assertion aaliou3lem4 L

Proof

Step Hyp Ref Expression
1 aaliou3lem.c F = a 2 a !
2 aaliou3lem.d L = b F b
3 aaliou3lem.e H = c b = 1 c F b
4 nnuz = 1
5 4 sumeq1i b F b = b 1 F b
6 2 5 eqtri L = b 1 F b
7 1nn 1
8 eqid c 1 2 1 ! 1 2 c 1 = c 1 2 1 ! 1 2 c 1
9 8 1 aaliou3lem3 1 seq 1 + F dom b 1 F b + b 1 F b 2 2 1 !
10 9 simp2d 1 b 1 F b +
11 rpre b 1 F b + b 1 F b
12 7 10 11 mp2b b 1 F b
13 6 12 eqeltri L