Metamath Proof Explorer


Theorem aaliou3lem5

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aaliou3lem.c F = a 2 a !
aaliou3lem.d L = b F b
aaliou3lem.e H = c b = 1 c F b
Assertion aaliou3lem5 A H A

Proof

Step Hyp Ref Expression
1 aaliou3lem.c F = a 2 a !
2 aaliou3lem.d L = b F b
3 aaliou3lem.e H = c b = 1 c F b
4 oveq2 c = A 1 c = 1 A
5 4 sumeq1d c = A b = 1 c F b = b = 1 A F b
6 sumex b = 1 A F b V
7 5 3 6 fvmpt A H A = b = 1 A F b
8 fzfid A 1 A Fin
9 elfznn b 1 A b
10 9 adantl A b 1 A b
11 fveq2 a = b a ! = b !
12 11 negeqd a = b a ! = b !
13 12 oveq2d a = b 2 a ! = 2 b !
14 ovex 2 b ! V
15 13 1 14 fvmpt b F b = 2 b !
16 2rp 2 +
17 nnnn0 b b 0
18 17 faccld b b !
19 18 nnzd b b !
20 19 znegcld b b !
21 rpexpcl 2 + b ! 2 b ! +
22 16 20 21 sylancr b 2 b ! +
23 22 rpred b 2 b !
24 15 23 eqeltrd b F b
25 10 24 syl A b 1 A F b
26 8 25 fsumrecl A b = 1 A F b
27 7 26 eqeltrd A H A