Step |
Hyp |
Ref |
Expression |
1 |
|
aaliou3lem.c |
|
2 |
|
aaliou3lem.d |
|
3 |
|
aaliou3lem.e |
|
4 |
|
oveq2 |
|
5 |
4
|
sumeq1d |
|
6 |
|
sumex |
|
7 |
5 3 6
|
fvmpt |
|
8 |
7
|
oveq1d |
|
9 |
|
fzfid |
|
10 |
|
2rp |
|
11 |
|
nnnn0 |
|
12 |
11
|
faccld |
|
13 |
12
|
nnzd |
|
14 |
|
rpexpcl |
|
15 |
10 13 14
|
sylancr |
|
16 |
15
|
rpcnd |
|
17 |
|
elfznn |
|
18 |
|
fveq2 |
|
19 |
18
|
negeqd |
|
20 |
19
|
oveq2d |
|
21 |
|
ovex |
|
22 |
20 1 21
|
fvmpt |
|
23 |
17 22
|
syl |
|
24 |
23
|
adantl |
|
25 |
17
|
adantl |
|
26 |
25
|
nnnn0d |
|
27 |
26
|
faccld |
|
28 |
27
|
nnzd |
|
29 |
28
|
znegcld |
|
30 |
|
rpexpcl |
|
31 |
10 29 30
|
sylancr |
|
32 |
31
|
rpcnd |
|
33 |
24 32
|
eqeltrd |
|
34 |
9 16 33
|
fsummulc1 |
|
35 |
24
|
oveq1d |
|
36 |
13
|
adantr |
|
37 |
|
2cnne0 |
|
38 |
|
expaddz |
|
39 |
37 38
|
mpan |
|
40 |
29 36 39
|
syl2anc |
|
41 |
|
2z |
|
42 |
29
|
zcnd |
|
43 |
36
|
zcnd |
|
44 |
42 43
|
addcomd |
|
45 |
27
|
nncnd |
|
46 |
43 45
|
negsubd |
|
47 |
44 46
|
eqtrd |
|
48 |
11
|
adantr |
|
49 |
|
elfzle2 |
|
50 |
49
|
adantl |
|
51 |
|
facwordi |
|
52 |
26 48 50 51
|
syl3anc |
|
53 |
27
|
nnnn0d |
|
54 |
48
|
faccld |
|
55 |
54
|
nnnn0d |
|
56 |
|
nn0sub |
|
57 |
53 55 56
|
syl2anc |
|
58 |
52 57
|
mpbid |
|
59 |
47 58
|
eqeltrd |
|
60 |
|
zexpcl |
|
61 |
41 59 60
|
sylancr |
|
62 |
40 61
|
eqeltrrd |
|
63 |
35 62
|
eqeltrd |
|
64 |
9 63
|
fsumzcl |
|
65 |
34 64
|
eqeltrd |
|
66 |
8 65
|
eqeltrd |
|