Metamath Proof Explorer


Theorem aaliou3lem6

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aaliou3lem.c F = a 2 a !
aaliou3lem.d L = b F b
aaliou3lem.e H = c b = 1 c F b
Assertion aaliou3lem6 A H A 2 A !

Proof

Step Hyp Ref Expression
1 aaliou3lem.c F = a 2 a !
2 aaliou3lem.d L = b F b
3 aaliou3lem.e H = c b = 1 c F b
4 oveq2 c = A 1 c = 1 A
5 4 sumeq1d c = A b = 1 c F b = b = 1 A F b
6 sumex b = 1 A F b V
7 5 3 6 fvmpt A H A = b = 1 A F b
8 7 oveq1d A H A 2 A ! = b = 1 A F b 2 A !
9 fzfid A 1 A Fin
10 2rp 2 +
11 nnnn0 A A 0
12 11 faccld A A !
13 12 nnzd A A !
14 rpexpcl 2 + A ! 2 A ! +
15 10 13 14 sylancr A 2 A ! +
16 15 rpcnd A 2 A !
17 elfznn b 1 A b
18 fveq2 a = b a ! = b !
19 18 negeqd a = b a ! = b !
20 19 oveq2d a = b 2 a ! = 2 b !
21 ovex 2 b ! V
22 20 1 21 fvmpt b F b = 2 b !
23 17 22 syl b 1 A F b = 2 b !
24 23 adantl A b 1 A F b = 2 b !
25 17 adantl A b 1 A b
26 25 nnnn0d A b 1 A b 0
27 26 faccld A b 1 A b !
28 27 nnzd A b 1 A b !
29 28 znegcld A b 1 A b !
30 rpexpcl 2 + b ! 2 b ! +
31 10 29 30 sylancr A b 1 A 2 b ! +
32 31 rpcnd A b 1 A 2 b !
33 24 32 eqeltrd A b 1 A F b
34 9 16 33 fsummulc1 A b = 1 A F b 2 A ! = b = 1 A F b 2 A !
35 24 oveq1d A b 1 A F b 2 A ! = 2 b ! 2 A !
36 13 adantr A b 1 A A !
37 2cnne0 2 2 0
38 expaddz 2 2 0 b ! A ! 2 - b ! + A ! = 2 b ! 2 A !
39 37 38 mpan b ! A ! 2 - b ! + A ! = 2 b ! 2 A !
40 29 36 39 syl2anc A b 1 A 2 - b ! + A ! = 2 b ! 2 A !
41 2z 2
42 29 zcnd A b 1 A b !
43 36 zcnd A b 1 A A !
44 42 43 addcomd A b 1 A - b ! + A ! = A ! + b !
45 27 nncnd A b 1 A b !
46 43 45 negsubd A b 1 A A ! + b ! = A ! b !
47 44 46 eqtrd A b 1 A - b ! + A ! = A ! b !
48 11 adantr A b 1 A A 0
49 elfzle2 b 1 A b A
50 49 adantl A b 1 A b A
51 facwordi b 0 A 0 b A b ! A !
52 26 48 50 51 syl3anc A b 1 A b ! A !
53 27 nnnn0d A b 1 A b ! 0
54 48 faccld A b 1 A A !
55 54 nnnn0d A b 1 A A ! 0
56 nn0sub b ! 0 A ! 0 b ! A ! A ! b ! 0
57 53 55 56 syl2anc A b 1 A b ! A ! A ! b ! 0
58 52 57 mpbid A b 1 A A ! b ! 0
59 47 58 eqeltrd A b 1 A - b ! + A ! 0
60 zexpcl 2 - b ! + A ! 0 2 - b ! + A !
61 41 59 60 sylancr A b 1 A 2 - b ! + A !
62 40 61 eqeltrrd A b 1 A 2 b ! 2 A !
63 35 62 eqeltrd A b 1 A F b 2 A !
64 9 63 fsumzcl A b = 1 A F b 2 A !
65 34 64 eqeltrd A b = 1 A F b 2 A !
66 8 65 eqeltrd A H A 2 A !