Metamath Proof Explorer


Theorem aaliou3lem7

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aaliou3lem.c F = a 2 a !
aaliou3lem.d L = b F b
aaliou3lem.e H = c b = 1 c F b
Assertion aaliou3lem7 A H A L L H A 2 2 A + 1 !

Proof

Step Hyp Ref Expression
1 aaliou3lem.c F = a 2 a !
2 aaliou3lem.d L = b F b
3 aaliou3lem.e H = c b = 1 c F b
4 peano2nn A A + 1
5 eqid c A + 1 2 A + 1 ! 1 2 c A + 1 = c A + 1 2 A + 1 ! 1 2 c A + 1
6 5 1 aaliou3lem3 A + 1 seq A + 1 + F dom b A + 1 F b + b A + 1 F b 2 2 A + 1 !
7 3simpc seq A + 1 + F dom b A + 1 F b + b A + 1 F b 2 2 A + 1 ! b A + 1 F b + b A + 1 F b 2 2 A + 1 !
8 4 6 7 3syl A b A + 1 F b + b A + 1 F b 2 2 A + 1 !
9 nncn A A
10 ax-1cn 1
11 pncan A 1 A + 1 - 1 = A
12 9 10 11 sylancl A A + 1 - 1 = A
13 12 oveq2d A 1 A + 1 - 1 = 1 A
14 13 sumeq1d A b = 1 A + 1 - 1 F b = b = 1 A F b
15 14 oveq1d A b = 1 A + 1 - 1 F b + b A + 1 F b = b = 1 A F b + b A + 1 F b
16 nnuz = 1
17 eqid A + 1 = A + 1
18 eqidd A b F b = F b
19 fveq2 a = b a ! = b !
20 19 negeqd a = b a ! = b !
21 20 oveq2d a = b 2 a ! = 2 b !
22 ovex 2 b ! V
23 21 1 22 fvmpt b F b = 2 b !
24 2rp 2 +
25 nnnn0 b b 0
26 faccl b 0 b !
27 25 26 syl b b !
28 27 nnzd b b !
29 28 znegcld b b !
30 rpexpcl 2 + b ! 2 b ! +
31 24 29 30 sylancr b 2 b ! +
32 31 rpcnd b 2 b !
33 23 32 eqeltrd b F b
34 33 adantl A b F b
35 1nn 1
36 eqid c 1 2 1 ! 1 2 c 1 = c 1 2 1 ! 1 2 c 1
37 36 1 aaliou3lem3 1 seq 1 + F dom b 1 F b + b 1 F b 2 2 1 !
38 37 simp1d 1 seq 1 + F dom
39 35 38 mp1i A seq 1 + F dom
40 16 17 4 18 34 39 isumsplit A b F b = b = 1 A + 1 - 1 F b + b A + 1 F b
41 oveq2 c = A 1 c = 1 A
42 41 sumeq1d c = A b = 1 c F b = b = 1 A F b
43 sumex b = 1 A F b V
44 42 3 43 fvmpt A H A = b = 1 A F b
45 44 oveq1d A H A + b A + 1 F b = b = 1 A F b + b A + 1 F b
46 15 40 45 3eqtr4rd A H A + b A + 1 F b = b F b
47 46 2 eqtr4di A H A + b A + 1 F b = L
48 1 2 3 aaliou3lem4 L
49 48 recni L
50 49 a1i A L
51 1 2 3 aaliou3lem5 A H A
52 51 recnd A H A
53 6 simp2d A + 1 b A + 1 F b +
54 4 53 syl A b A + 1 F b +
55 54 rpcnd A b A + 1 F b
56 50 52 55 subaddd A L H A = b A + 1 F b H A + b A + 1 F b = L
57 47 56 mpbird A L H A = b A + 1 F b
58 57 eqcomd A b A + 1 F b = L H A
59 eleq1 b A + 1 F b = L H A b A + 1 F b + L H A +
60 breq1 b A + 1 F b = L H A b A + 1 F b 2 2 A + 1 ! L H A 2 2 A + 1 !
61 59 60 anbi12d b A + 1 F b = L H A b A + 1 F b + b A + 1 F b 2 2 A + 1 ! L H A + L H A 2 2 A + 1 !
62 58 61 syl A b A + 1 F b + b A + 1 F b 2 2 A + 1 ! L H A + L H A 2 2 A + 1 !
63 51 adantr A L H A + L H A 2 2 A + 1 ! H A
64 simprl A L H A + L H A 2 2 A + 1 ! L H A +
65 difrp H A L H A < L L H A +
66 63 48 65 sylancl A L H A + L H A 2 2 A + 1 ! H A < L L H A +
67 64 66 mpbird A L H A + L H A 2 2 A + 1 ! H A < L
68 63 67 ltned A L H A + L H A 2 2 A + 1 ! H A L
69 nnnn0 A + 1 A + 1 0
70 faccl A + 1 0 A + 1 !
71 4 69 70 3syl A A + 1 !
72 71 nnzd A A + 1 !
73 72 znegcld A A + 1 !
74 rpexpcl 2 + A + 1 ! 2 A + 1 ! +
75 24 73 74 sylancr A 2 A + 1 ! +
76 rpmulcl 2 + 2 A + 1 ! + 2 2 A + 1 ! +
77 24 75 76 sylancr A 2 2 A + 1 ! +
78 77 adantr A L H A + L H A 2 2 A + 1 ! 2 2 A + 1 ! +
79 78 rpred A L H A + L H A 2 2 A + 1 ! 2 2 A + 1 !
80 63 79 resubcld A L H A + L H A 2 2 A + 1 ! H A 2 2 A + 1 !
81 48 a1i A L H A + L H A 2 2 A + 1 ! L
82 63 78 ltsubrpd A L H A + L H A 2 2 A + 1 ! H A 2 2 A + 1 ! < H A
83 80 63 81 82 67 lttrd A L H A + L H A 2 2 A + 1 ! H A 2 2 A + 1 ! < L
84 80 81 83 ltled A L H A + L H A 2 2 A + 1 ! H A 2 2 A + 1 ! L
85 simprr A L H A + L H A 2 2 A + 1 ! L H A 2 2 A + 1 !
86 81 63 79 lesubadd2d A L H A + L H A 2 2 A + 1 ! L H A 2 2 A + 1 ! L H A + 2 2 A + 1 !
87 85 86 mpbid A L H A + L H A 2 2 A + 1 ! L H A + 2 2 A + 1 !
88 81 63 79 absdifled A L H A + L H A 2 2 A + 1 ! L H A 2 2 A + 1 ! H A 2 2 A + 1 ! L L H A + 2 2 A + 1 !
89 84 87 88 mpbir2and A L H A + L H A 2 2 A + 1 ! L H A 2 2 A + 1 !
90 68 89 jca A L H A + L H A 2 2 A + 1 ! H A L L H A 2 2 A + 1 !
91 90 ex A L H A + L H A 2 2 A + 1 ! H A L L H A 2 2 A + 1 !
92 62 91 sylbid A b A + 1 F b + b A + 1 F b 2 2 A + 1 ! H A L L H A 2 2 A + 1 !
93 8 92 mpd A H A L L H A 2 2 A + 1 !