Step |
Hyp |
Ref |
Expression |
1 |
|
aaliou3lem.c |
|
2 |
|
aaliou3lem.d |
|
3 |
|
aaliou3lem.e |
|
4 |
|
peano2nn |
|
5 |
|
eqid |
|
6 |
5 1
|
aaliou3lem3 |
|
7 |
|
3simpc |
|
8 |
4 6 7
|
3syl |
|
9 |
|
nncn |
|
10 |
|
ax-1cn |
|
11 |
|
pncan |
|
12 |
9 10 11
|
sylancl |
|
13 |
12
|
oveq2d |
|
14 |
13
|
sumeq1d |
|
15 |
14
|
oveq1d |
|
16 |
|
nnuz |
|
17 |
|
eqid |
|
18 |
|
eqidd |
|
19 |
|
fveq2 |
|
20 |
19
|
negeqd |
|
21 |
20
|
oveq2d |
|
22 |
|
ovex |
|
23 |
21 1 22
|
fvmpt |
|
24 |
|
2rp |
|
25 |
|
nnnn0 |
|
26 |
|
faccl |
|
27 |
25 26
|
syl |
|
28 |
27
|
nnzd |
|
29 |
28
|
znegcld |
|
30 |
|
rpexpcl |
|
31 |
24 29 30
|
sylancr |
|
32 |
31
|
rpcnd |
|
33 |
23 32
|
eqeltrd |
|
34 |
33
|
adantl |
|
35 |
|
1nn |
|
36 |
|
eqid |
|
37 |
36 1
|
aaliou3lem3 |
|
38 |
37
|
simp1d |
|
39 |
35 38
|
mp1i |
|
40 |
16 17 4 18 34 39
|
isumsplit |
|
41 |
|
oveq2 |
|
42 |
41
|
sumeq1d |
|
43 |
|
sumex |
|
44 |
42 3 43
|
fvmpt |
|
45 |
44
|
oveq1d |
|
46 |
15 40 45
|
3eqtr4rd |
|
47 |
46 2
|
eqtr4di |
|
48 |
1 2 3
|
aaliou3lem4 |
|
49 |
48
|
recni |
|
50 |
49
|
a1i |
|
51 |
1 2 3
|
aaliou3lem5 |
|
52 |
51
|
recnd |
|
53 |
6
|
simp2d |
|
54 |
4 53
|
syl |
|
55 |
54
|
rpcnd |
|
56 |
50 52 55
|
subaddd |
|
57 |
47 56
|
mpbird |
|
58 |
57
|
eqcomd |
|
59 |
|
eleq1 |
|
60 |
|
breq1 |
|
61 |
59 60
|
anbi12d |
|
62 |
58 61
|
syl |
|
63 |
51
|
adantr |
|
64 |
|
simprl |
|
65 |
|
difrp |
|
66 |
63 48 65
|
sylancl |
|
67 |
64 66
|
mpbird |
|
68 |
63 67
|
ltned |
|
69 |
|
nnnn0 |
|
70 |
|
faccl |
|
71 |
4 69 70
|
3syl |
|
72 |
71
|
nnzd |
|
73 |
72
|
znegcld |
|
74 |
|
rpexpcl |
|
75 |
24 73 74
|
sylancr |
|
76 |
|
rpmulcl |
|
77 |
24 75 76
|
sylancr |
|
78 |
77
|
adantr |
|
79 |
78
|
rpred |
|
80 |
63 79
|
resubcld |
|
81 |
48
|
a1i |
|
82 |
63 78
|
ltsubrpd |
|
83 |
80 63 81 82 67
|
lttrd |
|
84 |
80 81 83
|
ltled |
|
85 |
|
simprr |
|
86 |
81 63 79
|
lesubadd2d |
|
87 |
85 86
|
mpbid |
|
88 |
81 63 79
|
absdifled |
|
89 |
84 87 88
|
mpbir2and |
|
90 |
68 89
|
jca |
|
91 |
90
|
ex |
|
92 |
62 91
|
sylbid |
|
93 |
8 92
|
mpd |
|