Metamath Proof Explorer


Theorem aaliou3lem8

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 20-Nov-2014)

Ref Expression
Assertion aaliou3lem8 A B + x 2 2 x + 1 ! B 2 x ! A

Proof

Step Hyp Ref Expression
1 2rp 2 +
2 rpdivcl 2 + B + 2 B +
3 1 2 mpan B + 2 B +
4 3 rpred B + 2 B
5 2re 2
6 1lt2 1 < 2
7 expnbnd 2 B 2 1 < 2 a 2 B < 2 a
8 5 6 7 mp3an23 2 B a 2 B < 2 a
9 4 8 syl B + a 2 B < 2 a
10 9 adantl A B + a 2 B < 2 a
11 simprl A B + a 2 B < 2 a a
12 simpll A B + a 2 B < 2 a A
13 nnaddm1cl a A a + A - 1
14 11 12 13 syl2anc A B + a 2 B < 2 a a + A - 1
15 simplr A B + a 2 B < 2 a B +
16 rerpdivcl 2 B + 2 B
17 5 15 16 sylancr A B + a 2 B < 2 a 2 B
18 11 nnnn0d A B + a 2 B < 2 a a 0
19 reexpcl 2 a 0 2 a
20 5 18 19 sylancr A B + a 2 B < 2 a 2 a
21 11 12 nnaddcld A B + a 2 B < 2 a a + A
22 nnm1nn0 a + A a + A - 1 0
23 21 22 syl A B + a 2 B < 2 a a + A - 1 0
24 peano2nn0 a + A - 1 0 a + A - 1 + 1 0
25 23 24 syl A B + a 2 B < 2 a a + A - 1 + 1 0
26 25 faccld A B + a 2 B < 2 a a + A - 1 + 1 !
27 26 nnzd A B + a 2 B < 2 a a + A - 1 + 1 !
28 23 faccld A B + a 2 B < 2 a a + A - 1 !
29 28 nnzd A B + a 2 B < 2 a a + A - 1 !
30 12 nnzd A B + a 2 B < 2 a A
31 29 30 zmulcld A B + a 2 B < 2 a a + A - 1 ! A
32 27 31 zsubcld A B + a 2 B < 2 a a + A - 1 + 1 ! a + A - 1 ! A
33 rpexpcl 2 + a + A - 1 + 1 ! a + A - 1 ! A 2 a + A - 1 + 1 ! a + A - 1 ! A +
34 1 32 33 sylancr A B + a 2 B < 2 a 2 a + A - 1 + 1 ! a + A - 1 ! A +
35 34 rpred A B + a 2 B < 2 a 2 a + A - 1 + 1 ! a + A - 1 ! A
36 simprr A B + a 2 B < 2 a 2 B < 2 a
37 17 20 36 ltled A B + a 2 B < 2 a 2 B 2 a
38 5 a1i A B + a 2 B < 2 a 2
39 1le2 1 2
40 39 a1i A B + a 2 B < 2 a 1 2
41 11 nnred A B + a 2 B < 2 a a
42 28 nnred A B + a 2 B < 2 a a + A - 1 !
43 18 nn0ge0d A B + a 2 B < 2 a 0 a
44 28 nnge1d A B + a 2 B < 2 a 1 a + A - 1 !
45 41 42 43 44 lemulge12d A B + a 2 B < 2 a a a + A - 1 ! a
46 facp1 a + A - 1 0 a + A - 1 + 1 ! = a + A - 1 ! a + A - 1 + 1
47 23 46 syl A B + a 2 B < 2 a a + A - 1 + 1 ! = a + A - 1 ! a + A - 1 + 1
48 47 oveq1d A B + a 2 B < 2 a a + A - 1 + 1 ! a + A - 1 ! A = a + A - 1 ! a + A - 1 + 1 a + A - 1 ! A
49 28 nncnd A B + a 2 B < 2 a a + A - 1 !
50 25 nn0cnd A B + a 2 B < 2 a a + A - 1 + 1
51 12 nncnd A B + a 2 B < 2 a A
52 49 50 51 subdid A B + a 2 B < 2 a a + A - 1 ! a + A - 1 + 1 - A = a + A - 1 ! a + A - 1 + 1 a + A - 1 ! A
53 11 nncnd A B + a 2 B < 2 a a
54 21 nncnd A B + a 2 B < 2 a a + A
55 1cnd A B + a 2 B < 2 a 1
56 54 55 npcand A B + a 2 B < 2 a a + A - 1 + 1 = a + A
57 53 51 56 mvrraddd A B + a 2 B < 2 a a + A - 1 + 1 - A = a
58 57 oveq2d A B + a 2 B < 2 a a + A - 1 ! a + A - 1 + 1 - A = a + A - 1 ! a
59 48 52 58 3eqtr2d A B + a 2 B < 2 a a + A - 1 + 1 ! a + A - 1 ! A = a + A - 1 ! a
60 45 59 breqtrrd A B + a 2 B < 2 a a a + A - 1 + 1 ! a + A - 1 ! A
61 11 nnzd A B + a 2 B < 2 a a
62 eluz a a + A - 1 + 1 ! a + A - 1 ! A a + A - 1 + 1 ! a + A - 1 ! A a a a + A - 1 + 1 ! a + A - 1 ! A
63 61 32 62 syl2anc A B + a 2 B < 2 a a + A - 1 + 1 ! a + A - 1 ! A a a a + A - 1 + 1 ! a + A - 1 ! A
64 60 63 mpbird A B + a 2 B < 2 a a + A - 1 + 1 ! a + A - 1 ! A a
65 38 40 64 leexp2ad A B + a 2 B < 2 a 2 a 2 a + A - 1 + 1 ! a + A - 1 ! A
66 17 20 35 37 65 letrd A B + a 2 B < 2 a 2 B 2 a + A - 1 + 1 ! a + A - 1 ! A
67 rpcnne0 2 + 2 2 0
68 1 67 mp1i A B + a 2 B < 2 a 2 2 0
69 expsub 2 2 0 a + A - 1 + 1 ! a + A - 1 ! A 2 a + A - 1 + 1 ! a + A - 1 ! A = 2 a + A - 1 + 1 ! 2 a + A - 1 ! A
70 68 27 31 69 syl12anc A B + a 2 B < 2 a 2 a + A - 1 + 1 ! a + A - 1 ! A = 2 a + A - 1 + 1 ! 2 a + A - 1 ! A
71 2cn 2
72 71 a1i A B + a 2 B < 2 a 2
73 12 nnnn0d A B + a 2 B < 2 a A 0
74 28 nnnn0d A B + a 2 B < 2 a a + A - 1 ! 0
75 72 73 74 expmuld A B + a 2 B < 2 a 2 a + A - 1 ! A = 2 a + A - 1 ! A
76 75 oveq2d A B + a 2 B < 2 a 2 a + A - 1 + 1 ! 2 a + A - 1 ! A = 2 a + A - 1 + 1 ! 2 a + A - 1 ! A
77 rpexpcl 2 + a + A - 1 + 1 ! 2 a + A - 1 + 1 ! +
78 1 27 77 sylancr A B + a 2 B < 2 a 2 a + A - 1 + 1 ! +
79 78 rpcnd A B + a 2 B < 2 a 2 a + A - 1 + 1 !
80 rpexpcl 2 + a + A - 1 ! 2 a + A - 1 ! +
81 1 29 80 sylancr A B + a 2 B < 2 a 2 a + A - 1 ! +
82 81 30 rpexpcld A B + a 2 B < 2 a 2 a + A - 1 ! A +
83 82 rpcnd A B + a 2 B < 2 a 2 a + A - 1 ! A
84 82 rpne0d A B + a 2 B < 2 a 2 a + A - 1 ! A 0
85 79 83 84 divrecd A B + a 2 B < 2 a 2 a + A - 1 + 1 ! 2 a + A - 1 ! A = 2 a + A - 1 + 1 ! 1 2 a + A - 1 ! A
86 70 76 85 3eqtrrd A B + a 2 B < 2 a 2 a + A - 1 + 1 ! 1 2 a + A - 1 ! A = 2 a + A - 1 + 1 ! a + A - 1 ! A
87 66 86 breqtrrd A B + a 2 B < 2 a 2 B 2 a + A - 1 + 1 ! 1 2 a + A - 1 ! A
88 82 rpreccld A B + a 2 B < 2 a 1 2 a + A - 1 ! A +
89 78 88 rpmulcld A B + a 2 B < 2 a 2 a + A - 1 + 1 ! 1 2 a + A - 1 ! A +
90 89 rpred A B + a 2 B < 2 a 2 a + A - 1 + 1 ! 1 2 a + A - 1 ! A
91 38 90 15 ledivmuld A B + a 2 B < 2 a 2 B 2 a + A - 1 + 1 ! 1 2 a + A - 1 ! A 2 B 2 a + A - 1 + 1 ! 1 2 a + A - 1 ! A
92 87 91 mpbid A B + a 2 B < 2 a 2 B 2 a + A - 1 + 1 ! 1 2 a + A - 1 ! A
93 15 rpcnd A B + a 2 B < 2 a B
94 88 rpcnd A B + a 2 B < 2 a 1 2 a + A - 1 ! A
95 93 79 94 mul12d A B + a 2 B < 2 a B 2 a + A - 1 + 1 ! 1 2 a + A - 1 ! A = 2 a + A - 1 + 1 ! B 1 2 a + A - 1 ! A
96 92 95 breqtrd A B + a 2 B < 2 a 2 2 a + A - 1 + 1 ! B 1 2 a + A - 1 ! A
97 15 88 rpmulcld A B + a 2 B < 2 a B 1 2 a + A - 1 ! A +
98 97 rpred A B + a 2 B < 2 a B 1 2 a + A - 1 ! A
99 38 98 78 ledivmuld A B + a 2 B < 2 a 2 2 a + A - 1 + 1 ! B 1 2 a + A - 1 ! A 2 2 a + A - 1 + 1 ! B 1 2 a + A - 1 ! A
100 96 99 mpbird A B + a 2 B < 2 a 2 2 a + A - 1 + 1 ! B 1 2 a + A - 1 ! A
101 26 nnnn0d A B + a 2 B < 2 a a + A - 1 + 1 ! 0
102 expneg 2 a + A - 1 + 1 ! 0 2 a + A - 1 + 1 ! = 1 2 a + A - 1 + 1 !
103 71 101 102 sylancr A B + a 2 B < 2 a 2 a + A - 1 + 1 ! = 1 2 a + A - 1 + 1 !
104 103 oveq2d A B + a 2 B < 2 a 2 2 a + A - 1 + 1 ! = 2 1 2 a + A - 1 + 1 !
105 78 rpne0d A B + a 2 B < 2 a 2 a + A - 1 + 1 ! 0
106 72 79 105 divrecd A B + a 2 B < 2 a 2 2 a + A - 1 + 1 ! = 2 1 2 a + A - 1 + 1 !
107 104 106 eqtr4d A B + a 2 B < 2 a 2 2 a + A - 1 + 1 ! = 2 2 a + A - 1 + 1 !
108 93 83 84 divrecd A B + a 2 B < 2 a B 2 a + A - 1 ! A = B 1 2 a + A - 1 ! A
109 100 107 108 3brtr4d A B + a 2 B < 2 a 2 2 a + A - 1 + 1 ! B 2 a + A - 1 ! A
110 fvoveq1 x = a + A - 1 x + 1 ! = a + A - 1 + 1 !
111 110 negeqd x = a + A - 1 x + 1 ! = a + A - 1 + 1 !
112 111 oveq2d x = a + A - 1 2 x + 1 ! = 2 a + A - 1 + 1 !
113 112 oveq2d x = a + A - 1 2 2 x + 1 ! = 2 2 a + A - 1 + 1 !
114 fveq2 x = a + A - 1 x ! = a + A - 1 !
115 114 oveq2d x = a + A - 1 2 x ! = 2 a + A - 1 !
116 115 oveq1d x = a + A - 1 2 x ! A = 2 a + A - 1 ! A
117 116 oveq2d x = a + A - 1 B 2 x ! A = B 2 a + A - 1 ! A
118 113 117 breq12d x = a + A - 1 2 2 x + 1 ! B 2 x ! A 2 2 a + A - 1 + 1 ! B 2 a + A - 1 ! A
119 118 rspcev a + A - 1 2 2 a + A - 1 + 1 ! B 2 a + A - 1 ! A x 2 2 x + 1 ! B 2 x ! A
120 14 109 119 syl2anc A B + a 2 B < 2 a x 2 2 x + 1 ! B 2 x ! A
121 10 120 rexlimddv A B + x 2 2 x + 1 ! B 2 x ! A