Step |
Hyp |
Ref |
Expression |
1 |
|
aalioulem1.a |
|
2 |
|
aalioulem1.b |
|
3 |
|
aalioulem1.c |
|
4 |
2
|
zcnd |
|
5 |
3
|
nncnd |
|
6 |
3
|
nnne0d |
|
7 |
4 5 6
|
divcld |
|
8 |
|
eqid |
|
9 |
|
eqid |
|
10 |
8 9
|
coeid2 |
|
11 |
1 7 10
|
syl2anc |
|
12 |
11
|
oveq1d |
|
13 |
|
fzfid |
|
14 |
|
dgrcl |
|
15 |
1 14
|
syl |
|
16 |
5 15
|
expcld |
|
17 |
|
0z |
|
18 |
8
|
coef2 |
|
19 |
1 17 18
|
sylancl |
|
20 |
|
elfznn0 |
|
21 |
|
ffvelrn |
|
22 |
19 20 21
|
syl2an |
|
23 |
22
|
zcnd |
|
24 |
|
expcl |
|
25 |
7 20 24
|
syl2an |
|
26 |
23 25
|
mulcld |
|
27 |
13 16 26
|
fsummulc1 |
|
28 |
12 27
|
eqtrd |
|
29 |
5
|
adantr |
|
30 |
15
|
adantr |
|
31 |
29 30
|
expcld |
|
32 |
23 25 31
|
mulassd |
|
33 |
2
|
adantr |
|
34 |
33
|
zcnd |
|
35 |
6
|
adantr |
|
36 |
20
|
adantl |
|
37 |
34 29 35 36
|
expdivd |
|
38 |
37
|
oveq1d |
|
39 |
34 36
|
expcld |
|
40 |
|
nnexpcl |
|
41 |
3 20 40
|
syl2an |
|
42 |
41
|
nncnd |
|
43 |
41
|
nnne0d |
|
44 |
39 42 31 43
|
div13d |
|
45 |
38 44
|
eqtrd |
|
46 |
|
elfzelz |
|
47 |
46
|
adantl |
|
48 |
30
|
nn0zd |
|
49 |
29 35 47 48
|
expsubd |
|
50 |
3
|
adantr |
|
51 |
50
|
nnzd |
|
52 |
|
fznn0sub |
|
53 |
52
|
adantl |
|
54 |
|
zexpcl |
|
55 |
51 53 54
|
syl2anc |
|
56 |
49 55
|
eqeltrrd |
|
57 |
|
zexpcl |
|
58 |
2 20 57
|
syl2an |
|
59 |
56 58
|
zmulcld |
|
60 |
45 59
|
eqeltrd |
|
61 |
22 60
|
zmulcld |
|
62 |
32 61
|
eqeltrd |
|
63 |
13 62
|
fsumzcl |
|
64 |
28 63
|
eqeltrd |
|