| Step | Hyp | Ref | Expression | 
						
							| 1 |  | aalioulem2.a |  | 
						
							| 2 |  | aalioulem2.b |  | 
						
							| 3 |  | aalioulem2.c |  | 
						
							| 4 |  | aalioulem2.d |  | 
						
							| 5 |  | 1rp |  | 
						
							| 6 |  | snssi |  | 
						
							| 7 | 5 6 | ax-mp |  | 
						
							| 8 |  | ssrab2 |  | 
						
							| 9 | 7 8 | unssi |  | 
						
							| 10 |  | ltso |  | 
						
							| 11 | 10 | a1i |  | 
						
							| 12 |  | snfi |  | 
						
							| 13 | 3 | nnne0d |  | 
						
							| 14 | 1 | eqcomi |  | 
						
							| 15 |  | dgr0 |  | 
						
							| 16 | 13 14 15 | 3netr4g |  | 
						
							| 17 |  | fveq2 |  | 
						
							| 18 | 17 | necon3i |  | 
						
							| 19 | 16 18 | syl |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 | 20 | fta1 |  | 
						
							| 22 | 2 19 21 | syl2anc |  | 
						
							| 23 | 22 | simpld |  | 
						
							| 24 |  | abrexfi |  | 
						
							| 25 | 23 24 | syl |  | 
						
							| 26 |  | rabssab |  | 
						
							| 27 |  | ssfi |  | 
						
							| 28 | 25 26 27 | sylancl |  | 
						
							| 29 |  | unfi |  | 
						
							| 30 | 12 28 29 | sylancr |  | 
						
							| 31 |  | 1ex |  | 
						
							| 32 | 31 | snid |  | 
						
							| 33 |  | elun1 |  | 
						
							| 34 |  | ne0i |  | 
						
							| 35 | 32 33 34 | mp2b |  | 
						
							| 36 | 35 | a1i |  | 
						
							| 37 |  | rpssre |  | 
						
							| 38 | 9 37 | sstri |  | 
						
							| 39 | 38 | a1i |  | 
						
							| 40 |  | fiinfcl |  | 
						
							| 41 | 11 30 36 39 40 | syl13anc |  | 
						
							| 42 | 9 41 | sselid |  | 
						
							| 43 |  | 0re |  | 
						
							| 44 |  | rpge0 |  | 
						
							| 45 | 44 | rgen |  | 
						
							| 46 |  | breq1 |  | 
						
							| 47 | 46 | ralbidv |  | 
						
							| 48 | 47 | rspcev |  | 
						
							| 49 | 43 45 48 | mp2an |  | 
						
							| 50 |  | ssralv |  | 
						
							| 51 | 9 50 | ax-mp |  | 
						
							| 52 | 51 | reximi |  | 
						
							| 53 | 49 52 | ax-mp |  | 
						
							| 54 |  | eqeq1 |  | 
						
							| 55 | 54 | rexbidv |  | 
						
							| 56 | 4 | ad2antrr |  | 
						
							| 57 |  | simplr |  | 
						
							| 58 | 56 57 | resubcld |  | 
						
							| 59 | 58 | recnd |  | 
						
							| 60 | 4 | ad2antrr |  | 
						
							| 61 | 60 | recnd |  | 
						
							| 62 |  | simplr |  | 
						
							| 63 | 62 | recnd |  | 
						
							| 64 | 61 63 | subeq0ad |  | 
						
							| 65 | 64 | necon3abid |  | 
						
							| 66 | 65 | biimprd |  | 
						
							| 67 | 66 | impr |  | 
						
							| 68 | 59 67 | absrpcld |  | 
						
							| 69 | 57 | recnd |  | 
						
							| 70 |  | simprl |  | 
						
							| 71 |  | plyf |  | 
						
							| 72 | 2 71 | syl |  | 
						
							| 73 | 72 | ffnd |  | 
						
							| 74 | 73 | ad2antrr |  | 
						
							| 75 |  | fniniseg |  | 
						
							| 76 | 74 75 | syl |  | 
						
							| 77 | 69 70 76 | mpbir2and |  | 
						
							| 78 |  | eqid |  | 
						
							| 79 |  | oveq2 |  | 
						
							| 80 | 79 | fveq2d |  | 
						
							| 81 | 80 | rspceeqv |  | 
						
							| 82 | 77 78 81 | sylancl |  | 
						
							| 83 | 55 68 82 | elrabd |  | 
						
							| 84 |  | elun2 |  | 
						
							| 85 | 83 84 | syl |  | 
						
							| 86 |  | infrelb |  | 
						
							| 87 | 38 53 85 86 | mp3an12i |  | 
						
							| 88 | 87 | expr |  | 
						
							| 89 | 88 | orrd |  | 
						
							| 90 | 89 | ex |  | 
						
							| 91 | 90 | ralrimiva |  | 
						
							| 92 |  | breq1 |  | 
						
							| 93 | 92 | orbi2d |  | 
						
							| 94 | 93 | imbi2d |  | 
						
							| 95 | 94 | ralbidv |  | 
						
							| 96 | 95 | rspcev |  | 
						
							| 97 | 42 91 96 | syl2anc |  | 
						
							| 98 |  | fveqeq2 |  | 
						
							| 99 |  | eqeq2 |  | 
						
							| 100 |  | oveq2 |  | 
						
							| 101 | 100 | fveq2d |  | 
						
							| 102 | 101 | breq2d |  | 
						
							| 103 | 99 102 | orbi12d |  | 
						
							| 104 | 98 103 | imbi12d |  | 
						
							| 105 | 104 | rspcv |  | 
						
							| 106 |  | znq |  | 
						
							| 107 |  | qre |  | 
						
							| 108 | 106 107 | syl |  | 
						
							| 109 | 105 108 | syl11 |  | 
						
							| 110 | 109 | ralrimivv |  | 
						
							| 111 | 110 | reximi |  | 
						
							| 112 | 97 111 | syl |  | 
						
							| 113 |  | simplr |  | 
						
							| 114 |  | simprr |  | 
						
							| 115 | 3 | nnnn0d |  | 
						
							| 116 | 115 | ad2antrr |  | 
						
							| 117 | 114 116 | nnexpcld |  | 
						
							| 118 | 117 | nnrpd |  | 
						
							| 119 | 113 118 | rpdivcld |  | 
						
							| 120 | 119 | rpred |  | 
						
							| 121 | 120 | adantr |  | 
						
							| 122 |  | simpllr |  | 
						
							| 123 | 122 | rpred |  | 
						
							| 124 | 4 | ad2antrr |  | 
						
							| 125 | 108 | adantl |  | 
						
							| 126 | 124 125 | resubcld |  | 
						
							| 127 | 126 | recnd |  | 
						
							| 128 | 127 | abscld |  | 
						
							| 129 | 128 | adantr |  | 
						
							| 130 |  | rpre |  | 
						
							| 131 | 130 | ad2antlr |  | 
						
							| 132 | 113 | rpcnne0d |  | 
						
							| 133 |  | divid |  | 
						
							| 134 | 132 133 | syl |  | 
						
							| 135 | 117 | nnge1d |  | 
						
							| 136 | 134 135 | eqbrtrd |  | 
						
							| 137 | 131 113 118 136 | lediv23d |  | 
						
							| 138 | 137 | adantr |  | 
						
							| 139 |  | simpr |  | 
						
							| 140 | 121 123 129 138 139 | letrd |  | 
						
							| 141 | 140 | ex |  | 
						
							| 142 | 141 | orim2d |  | 
						
							| 143 | 142 | imim2d |  | 
						
							| 144 | 143 | ralimdvva |  | 
						
							| 145 | 144 | reximdva |  | 
						
							| 146 | 112 145 | mpd |  |