Step |
Hyp |
Ref |
Expression |
1 |
|
aalioulem2.a |
|
2 |
|
aalioulem2.b |
|
3 |
|
aalioulem2.c |
|
4 |
|
aalioulem2.d |
|
5 |
|
1rp |
|
6 |
|
snssi |
|
7 |
5 6
|
ax-mp |
|
8 |
|
ssrab2 |
|
9 |
7 8
|
unssi |
|
10 |
|
ltso |
|
11 |
10
|
a1i |
|
12 |
|
snfi |
|
13 |
3
|
nnne0d |
|
14 |
1
|
eqcomi |
|
15 |
|
dgr0 |
|
16 |
13 14 15
|
3netr4g |
|
17 |
|
fveq2 |
|
18 |
17
|
necon3i |
|
19 |
16 18
|
syl |
|
20 |
|
eqid |
|
21 |
20
|
fta1 |
|
22 |
2 19 21
|
syl2anc |
|
23 |
22
|
simpld |
|
24 |
|
abrexfi |
|
25 |
23 24
|
syl |
|
26 |
|
rabssab |
|
27 |
|
ssfi |
|
28 |
25 26 27
|
sylancl |
|
29 |
|
unfi |
|
30 |
12 28 29
|
sylancr |
|
31 |
|
1ex |
|
32 |
31
|
snid |
|
33 |
|
elun1 |
|
34 |
|
ne0i |
|
35 |
32 33 34
|
mp2b |
|
36 |
35
|
a1i |
|
37 |
|
rpssre |
|
38 |
9 37
|
sstri |
|
39 |
38
|
a1i |
|
40 |
|
fiinfcl |
|
41 |
11 30 36 39 40
|
syl13anc |
|
42 |
9 41
|
sselid |
|
43 |
|
0re |
|
44 |
|
rpge0 |
|
45 |
44
|
rgen |
|
46 |
|
breq1 |
|
47 |
46
|
ralbidv |
|
48 |
47
|
rspcev |
|
49 |
43 45 48
|
mp2an |
|
50 |
|
ssralv |
|
51 |
9 50
|
ax-mp |
|
52 |
51
|
reximi |
|
53 |
49 52
|
ax-mp |
|
54 |
|
eqeq1 |
|
55 |
54
|
rexbidv |
|
56 |
4
|
ad2antrr |
|
57 |
|
simplr |
|
58 |
56 57
|
resubcld |
|
59 |
58
|
recnd |
|
60 |
4
|
ad2antrr |
|
61 |
60
|
recnd |
|
62 |
|
simplr |
|
63 |
62
|
recnd |
|
64 |
61 63
|
subeq0ad |
|
65 |
64
|
necon3abid |
|
66 |
65
|
biimprd |
|
67 |
66
|
impr |
|
68 |
59 67
|
absrpcld |
|
69 |
57
|
recnd |
|
70 |
|
simprl |
|
71 |
|
plyf |
|
72 |
2 71
|
syl |
|
73 |
72
|
ffnd |
|
74 |
73
|
ad2antrr |
|
75 |
|
fniniseg |
|
76 |
74 75
|
syl |
|
77 |
69 70 76
|
mpbir2and |
|
78 |
|
eqid |
|
79 |
|
oveq2 |
|
80 |
79
|
fveq2d |
|
81 |
80
|
rspceeqv |
|
82 |
77 78 81
|
sylancl |
|
83 |
55 68 82
|
elrabd |
|
84 |
|
elun2 |
|
85 |
83 84
|
syl |
|
86 |
|
infrelb |
|
87 |
38 53 85 86
|
mp3an12i |
|
88 |
87
|
expr |
|
89 |
88
|
orrd |
|
90 |
89
|
ex |
|
91 |
90
|
ralrimiva |
|
92 |
|
breq1 |
|
93 |
92
|
orbi2d |
|
94 |
93
|
imbi2d |
|
95 |
94
|
ralbidv |
|
96 |
95
|
rspcev |
|
97 |
42 91 96
|
syl2anc |
|
98 |
|
fveqeq2 |
|
99 |
|
eqeq2 |
|
100 |
|
oveq2 |
|
101 |
100
|
fveq2d |
|
102 |
101
|
breq2d |
|
103 |
99 102
|
orbi12d |
|
104 |
98 103
|
imbi12d |
|
105 |
104
|
rspcv |
|
106 |
|
znq |
|
107 |
|
qre |
|
108 |
106 107
|
syl |
|
109 |
105 108
|
syl11 |
|
110 |
109
|
ralrimivv |
|
111 |
110
|
reximi |
|
112 |
97 111
|
syl |
|
113 |
|
simplr |
|
114 |
|
simprr |
|
115 |
3
|
nnnn0d |
|
116 |
115
|
ad2antrr |
|
117 |
114 116
|
nnexpcld |
|
118 |
117
|
nnrpd |
|
119 |
113 118
|
rpdivcld |
|
120 |
119
|
rpred |
|
121 |
120
|
adantr |
|
122 |
|
simpllr |
|
123 |
122
|
rpred |
|
124 |
4
|
ad2antrr |
|
125 |
108
|
adantl |
|
126 |
124 125
|
resubcld |
|
127 |
126
|
recnd |
|
128 |
127
|
abscld |
|
129 |
128
|
adantr |
|
130 |
|
rpre |
|
131 |
130
|
ad2antlr |
|
132 |
113
|
rpcnne0d |
|
133 |
|
divid |
|
134 |
132 133
|
syl |
|
135 |
117
|
nnge1d |
|
136 |
134 135
|
eqbrtrd |
|
137 |
131 113 118 136
|
lediv23d |
|
138 |
137
|
adantr |
|
139 |
|
simpr |
|
140 |
121 123 129 138 139
|
letrd |
|
141 |
140
|
ex |
|
142 |
141
|
orim2d |
|
143 |
142
|
imim2d |
|
144 |
143
|
ralimdvva |
|
145 |
144
|
reximdva |
|
146 |
112 145
|
mpd |
|