Metamath Proof Explorer


Theorem aalioulem2

Description: Lemma for aaliou . (Contributed by Stefan O'Rear, 15-Nov-2014) (Proof shortened by AV, 28-Sep-2020)

Ref Expression
Hypotheses aalioulem2.a N = deg F
aalioulem2.b φ F Poly
aalioulem2.c φ N
aalioulem2.d φ A
Assertion aalioulem2 φ x + p q F p q = 0 A = p q x q N A p q

Proof

Step Hyp Ref Expression
1 aalioulem2.a N = deg F
2 aalioulem2.b φ F Poly
3 aalioulem2.c φ N
4 aalioulem2.d φ A
5 1rp 1 +
6 snssi 1 + 1 +
7 5 6 ax-mp 1 +
8 ssrab2 a + | b F -1 0 a = A b +
9 7 8 unssi 1 a + | b F -1 0 a = A b +
10 ltso < Or
11 10 a1i φ < Or
12 snfi 1 Fin
13 3 nnne0d φ N 0
14 1 eqcomi deg F = N
15 dgr0 deg 0 𝑝 = 0
16 13 14 15 3netr4g φ deg F deg 0 𝑝
17 fveq2 F = 0 𝑝 deg F = deg 0 𝑝
18 17 necon3i deg F deg 0 𝑝 F 0 𝑝
19 16 18 syl φ F 0 𝑝
20 eqid F -1 0 = F -1 0
21 20 fta1 F Poly F 0 𝑝 F -1 0 Fin F -1 0 deg F
22 2 19 21 syl2anc φ F -1 0 Fin F -1 0 deg F
23 22 simpld φ F -1 0 Fin
24 abrexfi F -1 0 Fin a | b F -1 0 a = A b Fin
25 23 24 syl φ a | b F -1 0 a = A b Fin
26 rabssab a + | b F -1 0 a = A b a | b F -1 0 a = A b
27 ssfi a | b F -1 0 a = A b Fin a + | b F -1 0 a = A b a | b F -1 0 a = A b a + | b F -1 0 a = A b Fin
28 25 26 27 sylancl φ a + | b F -1 0 a = A b Fin
29 unfi 1 Fin a + | b F -1 0 a = A b Fin 1 a + | b F -1 0 a = A b Fin
30 12 28 29 sylancr φ 1 a + | b F -1 0 a = A b Fin
31 1ex 1 V
32 31 snid 1 1
33 elun1 1 1 1 1 a + | b F -1 0 a = A b
34 ne0i 1 1 a + | b F -1 0 a = A b 1 a + | b F -1 0 a = A b
35 32 33 34 mp2b 1 a + | b F -1 0 a = A b
36 35 a1i φ 1 a + | b F -1 0 a = A b
37 rpssre +
38 9 37 sstri 1 a + | b F -1 0 a = A b
39 38 a1i φ 1 a + | b F -1 0 a = A b
40 fiinfcl < Or 1 a + | b F -1 0 a = A b Fin 1 a + | b F -1 0 a = A b 1 a + | b F -1 0 a = A b sup 1 a + | b F -1 0 a = A b < 1 a + | b F -1 0 a = A b
41 11 30 36 39 40 syl13anc φ sup 1 a + | b F -1 0 a = A b < 1 a + | b F -1 0 a = A b
42 9 41 sselid φ sup 1 a + | b F -1 0 a = A b < +
43 0re 0
44 rpge0 d + 0 d
45 44 rgen d + 0 d
46 breq1 c = 0 c d 0 d
47 46 ralbidv c = 0 d + c d d + 0 d
48 47 rspcev 0 d + 0 d c d + c d
49 43 45 48 mp2an c d + c d
50 ssralv 1 a + | b F -1 0 a = A b + d + c d d 1 a + | b F -1 0 a = A b c d
51 9 50 ax-mp d + c d d 1 a + | b F -1 0 a = A b c d
52 51 reximi c d + c d c d 1 a + | b F -1 0 a = A b c d
53 49 52 ax-mp c d 1 a + | b F -1 0 a = A b c d
54 eqeq1 a = A r a = A b A r = A b
55 54 rexbidv a = A r b F -1 0 a = A b b F -1 0 A r = A b
56 4 ad2antrr φ r F r = 0 ¬ A = r A
57 simplr φ r F r = 0 ¬ A = r r
58 56 57 resubcld φ r F r = 0 ¬ A = r A r
59 58 recnd φ r F r = 0 ¬ A = r A r
60 4 ad2antrr φ r F r = 0 A
61 60 recnd φ r F r = 0 A
62 simplr φ r F r = 0 r
63 62 recnd φ r F r = 0 r
64 61 63 subeq0ad φ r F r = 0 A r = 0 A = r
65 64 necon3abid φ r F r = 0 A r 0 ¬ A = r
66 65 biimprd φ r F r = 0 ¬ A = r A r 0
67 66 impr φ r F r = 0 ¬ A = r A r 0
68 59 67 absrpcld φ r F r = 0 ¬ A = r A r +
69 57 recnd φ r F r = 0 ¬ A = r r
70 simprl φ r F r = 0 ¬ A = r F r = 0
71 plyf F Poly F :
72 2 71 syl φ F :
73 72 ffnd φ F Fn
74 73 ad2antrr φ r F r = 0 ¬ A = r F Fn
75 fniniseg F Fn r F -1 0 r F r = 0
76 74 75 syl φ r F r = 0 ¬ A = r r F -1 0 r F r = 0
77 69 70 76 mpbir2and φ r F r = 0 ¬ A = r r F -1 0
78 eqid A r = A r
79 oveq2 b = r A b = A r
80 79 fveq2d b = r A b = A r
81 80 rspceeqv r F -1 0 A r = A r b F -1 0 A r = A b
82 77 78 81 sylancl φ r F r = 0 ¬ A = r b F -1 0 A r = A b
83 55 68 82 elrabd φ r F r = 0 ¬ A = r A r a + | b F -1 0 a = A b
84 elun2 A r a + | b F -1 0 a = A b A r 1 a + | b F -1 0 a = A b
85 83 84 syl φ r F r = 0 ¬ A = r A r 1 a + | b F -1 0 a = A b
86 infrelb 1 a + | b F -1 0 a = A b c d 1 a + | b F -1 0 a = A b c d A r 1 a + | b F -1 0 a = A b sup 1 a + | b F -1 0 a = A b < A r
87 38 53 85 86 mp3an12i φ r F r = 0 ¬ A = r sup 1 a + | b F -1 0 a = A b < A r
88 87 expr φ r F r = 0 ¬ A = r sup 1 a + | b F -1 0 a = A b < A r
89 88 orrd φ r F r = 0 A = r sup 1 a + | b F -1 0 a = A b < A r
90 89 ex φ r F r = 0 A = r sup 1 a + | b F -1 0 a = A b < A r
91 90 ralrimiva φ r F r = 0 A = r sup 1 a + | b F -1 0 a = A b < A r
92 breq1 x = sup 1 a + | b F -1 0 a = A b < x A r sup 1 a + | b F -1 0 a = A b < A r
93 92 orbi2d x = sup 1 a + | b F -1 0 a = A b < A = r x A r A = r sup 1 a + | b F -1 0 a = A b < A r
94 93 imbi2d x = sup 1 a + | b F -1 0 a = A b < F r = 0 A = r x A r F r = 0 A = r sup 1 a + | b F -1 0 a = A b < A r
95 94 ralbidv x = sup 1 a + | b F -1 0 a = A b < r F r = 0 A = r x A r r F r = 0 A = r sup 1 a + | b F -1 0 a = A b < A r
96 95 rspcev sup 1 a + | b F -1 0 a = A b < + r F r = 0 A = r sup 1 a + | b F -1 0 a = A b < A r x + r F r = 0 A = r x A r
97 42 91 96 syl2anc φ x + r F r = 0 A = r x A r
98 fveqeq2 r = p q F r = 0 F p q = 0
99 eqeq2 r = p q A = r A = p q
100 oveq2 r = p q A r = A p q
101 100 fveq2d r = p q A r = A p q
102 101 breq2d r = p q x A r x A p q
103 99 102 orbi12d r = p q A = r x A r A = p q x A p q
104 98 103 imbi12d r = p q F r = 0 A = r x A r F p q = 0 A = p q x A p q
105 104 rspcv p q r F r = 0 A = r x A r F p q = 0 A = p q x A p q
106 znq p q p q
107 qre p q p q
108 106 107 syl p q p q
109 105 108 syl11 r F r = 0 A = r x A r p q F p q = 0 A = p q x A p q
110 109 ralrimivv r F r = 0 A = r x A r p q F p q = 0 A = p q x A p q
111 110 reximi x + r F r = 0 A = r x A r x + p q F p q = 0 A = p q x A p q
112 97 111 syl φ x + p q F p q = 0 A = p q x A p q
113 simplr φ x + p q x +
114 simprr φ x + p q q
115 3 nnnn0d φ N 0
116 115 ad2antrr φ x + p q N 0
117 114 116 nnexpcld φ x + p q q N
118 117 nnrpd φ x + p q q N +
119 113 118 rpdivcld φ x + p q x q N +
120 119 rpred φ x + p q x q N
121 120 adantr φ x + p q x A p q x q N
122 simpllr φ x + p q x A p q x +
123 122 rpred φ x + p q x A p q x
124 4 ad2antrr φ x + p q A
125 108 adantl φ x + p q p q
126 124 125 resubcld φ x + p q A p q
127 126 recnd φ x + p q A p q
128 127 abscld φ x + p q A p q
129 128 adantr φ x + p q x A p q A p q
130 rpre x + x
131 130 ad2antlr φ x + p q x
132 113 rpcnne0d φ x + p q x x 0
133 divid x x 0 x x = 1
134 132 133 syl φ x + p q x x = 1
135 117 nnge1d φ x + p q 1 q N
136 134 135 eqbrtrd φ x + p q x x q N
137 131 113 118 136 lediv23d φ x + p q x q N x
138 137 adantr φ x + p q x A p q x q N x
139 simpr φ x + p q x A p q x A p q
140 121 123 129 138 139 letrd φ x + p q x A p q x q N A p q
141 140 ex φ x + p q x A p q x q N A p q
142 141 orim2d φ x + p q A = p q x A p q A = p q x q N A p q
143 142 imim2d φ x + p q F p q = 0 A = p q x A p q F p q = 0 A = p q x q N A p q
144 143 ralimdvva φ x + p q F p q = 0 A = p q x A p q p q F p q = 0 A = p q x q N A p q
145 144 reximdva φ x + p q F p q = 0 A = p q x A p q x + p q F p q = 0 A = p q x q N A p q
146 112 145 mpd φ x + p q F p q = 0 A = p q x q N A p q