Metamath Proof Explorer


Theorem aalioulem4

Description: Lemma for aaliou . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aalioulem2.a N = deg F
aalioulem2.b φ F Poly
aalioulem2.c φ N
aalioulem2.d φ A
aalioulem3.e φ F A = 0
Assertion aalioulem4 φ x + p q F p q 0 A p q 1 A = p q x q N A p q

Proof

Step Hyp Ref Expression
1 aalioulem2.a N = deg F
2 aalioulem2.b φ F Poly
3 aalioulem2.c φ N
4 aalioulem2.d φ A
5 aalioulem3.e φ F A = 0
6 1 2 3 4 5 aalioulem3 φ x + a A a 1 x F a A a
7 simp2l φ x + p q F p q 0 A p q 1 p
8 simp2r φ x + p q F p q 0 A p q 1 q
9 znq p q p q
10 7 8 9 syl2anc φ x + p q F p q 0 A p q 1 p q
11 qre p q p q
12 10 11 syl φ x + p q F p q 0 A p q 1 p q
13 simp3r φ x + p q F p q 0 A p q 1 A p q 1
14 oveq2 a = p q A a = A p q
15 14 fveq2d a = p q A a = A p q
16 15 breq1d a = p q A a 1 A p q 1
17 2fveq3 a = p q F a = F p q
18 17 oveq2d a = p q x F a = x F p q
19 18 15 breq12d a = p q x F a A a x F p q A p q
20 16 19 imbi12d a = p q A a 1 x F a A a A p q 1 x F p q A p q
21 20 rspcv p q a A a 1 x F a A a A p q 1 x F p q A p q
22 21 com23 p q A p q 1 a A a 1 x F a A a x F p q A p q
23 12 13 22 sylc φ x + p q F p q 0 A p q 1 a A a 1 x F a A a x F p q A p q
24 simp1r φ x + p q F p q 0 A p q 1 x +
25 8 nnrpd φ x + p q F p q 0 A p q 1 q +
26 simp1l φ x + p q F p q 0 A p q 1 φ
27 26 3 syl φ x + p q F p q 0 A p q 1 N
28 27 nnzd φ x + p q F p q 0 A p q 1 N
29 25 28 rpexpcld φ x + p q F p q 0 A p q 1 q N +
30 24 29 rpdivcld φ x + p q F p q 0 A p q 1 x q N +
31 30 rpred φ x + p q F p q 0 A p q 1 x q N
32 31 adantr φ x + p q F p q 0 A p q 1 x F p q A p q x q N
33 24 rpred φ x + p q F p q 0 A p q 1 x
34 26 2 syl φ x + p q F p q 0 A p q 1 F Poly
35 plyf F Poly F :
36 34 35 syl φ x + p q F p q 0 A p q 1 F :
37 12 recnd φ x + p q F p q 0 A p q 1 p q
38 36 37 ffvelrnd φ x + p q F p q 0 A p q 1 F p q
39 38 abscld φ x + p q F p q 0 A p q 1 F p q
40 33 39 remulcld φ x + p q F p q 0 A p q 1 x F p q
41 40 adantr φ x + p q F p q 0 A p q 1 x F p q A p q x F p q
42 26 4 syl φ x + p q F p q 0 A p q 1 A
43 42 12 resubcld φ x + p q F p q 0 A p q 1 A p q
44 43 recnd φ x + p q F p q 0 A p q 1 A p q
45 44 abscld φ x + p q F p q 0 A p q 1 A p q
46 45 adantr φ x + p q F p q 0 A p q 1 x F p q A p q A p q
47 24 rpcnd φ x + p q F p q 0 A p q 1 x
48 29 rpcnd φ x + p q F p q 0 A p q 1 q N
49 29 rpne0d φ x + p q F p q 0 A p q 1 q N 0
50 47 48 49 divrecd φ x + p q F p q 0 A p q 1 x q N = x 1 q N
51 48 38 absmuld φ x + p q F p q 0 A p q 1 q N F p q = q N F p q
52 29 rpred φ x + p q F p q 0 A p q 1 q N
53 29 rpge0d φ x + p q F p q 0 A p q 1 0 q N
54 52 53 absidd φ x + p q F p q 0 A p q 1 q N = q N
55 54 oveq1d φ x + p q F p q 0 A p q 1 q N F p q = q N F p q
56 51 55 eqtrd φ x + p q F p q 0 A p q 1 q N F p q = q N F p q
57 48 38 mulcomd φ x + p q F p q 0 A p q 1 q N F p q = F p q q N
58 1 oveq2i q N = q deg F
59 58 oveq2i F p q q N = F p q q deg F
60 57 59 eqtrdi φ x + p q F p q 0 A p q 1 q N F p q = F p q q deg F
61 34 7 8 aalioulem1 φ x + p q F p q 0 A p q 1 F p q q deg F
62 60 61 eqeltrd φ x + p q F p q 0 A p q 1 q N F p q
63 simp3l φ x + p q F p q 0 A p q 1 F p q 0
64 48 38 49 63 mulne0d φ x + p q F p q 0 A p q 1 q N F p q 0
65 nnabscl q N F p q q N F p q 0 q N F p q
66 62 64 65 syl2anc φ x + p q F p q 0 A p q 1 q N F p q
67 56 66 eqeltrrd φ x + p q F p q 0 A p q 1 q N F p q
68 67 nnge1d φ x + p q F p q 0 A p q 1 1 q N F p q
69 1red φ x + p q F p q 0 A p q 1 1
70 69 39 29 ledivmuld φ x + p q F p q 0 A p q 1 1 q N F p q 1 q N F p q
71 68 70 mpbird φ x + p q F p q 0 A p q 1 1 q N F p q
72 29 rprecred φ x + p q F p q 0 A p q 1 1 q N
73 72 39 24 lemul2d φ x + p q F p q 0 A p q 1 1 q N F p q x 1 q N x F p q
74 71 73 mpbid φ x + p q F p q 0 A p q 1 x 1 q N x F p q
75 50 74 eqbrtrd φ x + p q F p q 0 A p q 1 x q N x F p q
76 75 adantr φ x + p q F p q 0 A p q 1 x F p q A p q x q N x F p q
77 simpr φ x + p q F p q 0 A p q 1 x F p q A p q x F p q A p q
78 32 41 46 76 77 letrd φ x + p q F p q 0 A p q 1 x F p q A p q x q N A p q
79 78 olcd φ x + p q F p q 0 A p q 1 x F p q A p q A = p q x q N A p q
80 79 ex φ x + p q F p q 0 A p q 1 x F p q A p q A = p q x q N A p q
81 23 80 syld φ x + p q F p q 0 A p q 1 a A a 1 x F a A a A = p q x q N A p q
82 81 3exp φ x + p q F p q 0 A p q 1 a A a 1 x F a A a A = p q x q N A p q
83 82 com34 φ x + p q a A a 1 x F a A a F p q 0 A p q 1 A = p q x q N A p q
84 83 com23 φ x + a A a 1 x F a A a p q F p q 0 A p q 1 A = p q x q N A p q
85 84 ralrimdvv φ x + a A a 1 x F a A a p q F p q 0 A p q 1 A = p q x q N A p q
86 85 reximdva φ x + a A a 1 x F a A a x + p q F p q 0 A p q 1 A = p q x q N A p q
87 6 86 mpd φ x + p q F p q 0 A p q 1 A = p q x q N A p q