Step |
Hyp |
Ref |
Expression |
1 |
|
aalioulem2.a |
|
2 |
|
aalioulem2.b |
|
3 |
|
aalioulem2.c |
|
4 |
|
aalioulem2.d |
|
5 |
|
aalioulem3.e |
|
6 |
1 2 3 4 5
|
aalioulem3 |
|
7 |
|
simp2l |
|
8 |
|
simp2r |
|
9 |
|
znq |
|
10 |
7 8 9
|
syl2anc |
|
11 |
|
qre |
|
12 |
10 11
|
syl |
|
13 |
|
simp3r |
|
14 |
|
oveq2 |
|
15 |
14
|
fveq2d |
|
16 |
15
|
breq1d |
|
17 |
|
2fveq3 |
|
18 |
17
|
oveq2d |
|
19 |
18 15
|
breq12d |
|
20 |
16 19
|
imbi12d |
|
21 |
20
|
rspcv |
|
22 |
21
|
com23 |
|
23 |
12 13 22
|
sylc |
|
24 |
|
simp1r |
|
25 |
8
|
nnrpd |
|
26 |
|
simp1l |
|
27 |
26 3
|
syl |
|
28 |
27
|
nnzd |
|
29 |
25 28
|
rpexpcld |
|
30 |
24 29
|
rpdivcld |
|
31 |
30
|
rpred |
|
32 |
31
|
adantr |
|
33 |
24
|
rpred |
|
34 |
26 2
|
syl |
|
35 |
|
plyf |
|
36 |
34 35
|
syl |
|
37 |
12
|
recnd |
|
38 |
36 37
|
ffvelrnd |
|
39 |
38
|
abscld |
|
40 |
33 39
|
remulcld |
|
41 |
40
|
adantr |
|
42 |
26 4
|
syl |
|
43 |
42 12
|
resubcld |
|
44 |
43
|
recnd |
|
45 |
44
|
abscld |
|
46 |
45
|
adantr |
|
47 |
24
|
rpcnd |
|
48 |
29
|
rpcnd |
|
49 |
29
|
rpne0d |
|
50 |
47 48 49
|
divrecd |
|
51 |
48 38
|
absmuld |
|
52 |
29
|
rpred |
|
53 |
29
|
rpge0d |
|
54 |
52 53
|
absidd |
|
55 |
54
|
oveq1d |
|
56 |
51 55
|
eqtrd |
|
57 |
48 38
|
mulcomd |
|
58 |
1
|
oveq2i |
|
59 |
58
|
oveq2i |
|
60 |
57 59
|
eqtrdi |
|
61 |
34 7 8
|
aalioulem1 |
|
62 |
60 61
|
eqeltrd |
|
63 |
|
simp3l |
|
64 |
48 38 49 63
|
mulne0d |
|
65 |
|
nnabscl |
|
66 |
62 64 65
|
syl2anc |
|
67 |
56 66
|
eqeltrrd |
|
68 |
67
|
nnge1d |
|
69 |
|
1red |
|
70 |
69 39 29
|
ledivmuld |
|
71 |
68 70
|
mpbird |
|
72 |
29
|
rprecred |
|
73 |
72 39 24
|
lemul2d |
|
74 |
71 73
|
mpbid |
|
75 |
50 74
|
eqbrtrd |
|
76 |
75
|
adantr |
|
77 |
|
simpr |
|
78 |
32 41 46 76 77
|
letrd |
|
79 |
78
|
olcd |
|
80 |
79
|
ex |
|
81 |
23 80
|
syld |
|
82 |
81
|
3exp |
|
83 |
82
|
com34 |
|
84 |
83
|
com23 |
|
85 |
84
|
ralrimdvv |
|
86 |
85
|
reximdva |
|
87 |
6 86
|
mpd |
|