Step |
Hyp |
Ref |
Expression |
1 |
|
aalioulem2.a |
|
2 |
|
aalioulem2.b |
|
3 |
|
aalioulem2.c |
|
4 |
|
aalioulem2.d |
|
5 |
|
aalioulem3.e |
|
6 |
1 2 3 4 5
|
aalioulem4 |
|
7 |
|
simpr |
|
8 |
|
1rp |
|
9 |
|
ifcl |
|
10 |
7 8 9
|
sylancl |
|
11 |
10
|
adantr |
|
12 |
|
simprr |
|
13 |
12
|
nnrpd |
|
14 |
3
|
ad2antrr |
|
15 |
14
|
nnzd |
|
16 |
13 15
|
rpexpcld |
|
17 |
11 16
|
rpdivcld |
|
18 |
17
|
rpred |
|
19 |
|
1re |
|
20 |
19
|
a1i |
|
21 |
4
|
ad2antrr |
|
22 |
|
znq |
|
23 |
|
qre |
|
24 |
22 23
|
syl |
|
25 |
24
|
adantl |
|
26 |
21 25
|
resubcld |
|
27 |
26
|
recnd |
|
28 |
27
|
abscld |
|
29 |
18 20 28
|
3jca |
|
30 |
29
|
adantr |
|
31 |
16
|
rprecred |
|
32 |
11
|
rpred |
|
33 |
|
simplr |
|
34 |
33
|
rpred |
|
35 |
|
min2 |
|
36 |
34 19 35
|
sylancl |
|
37 |
32 20 16 36
|
lediv1dd |
|
38 |
14
|
nnnn0d |
|
39 |
12 38
|
nnexpcld |
|
40 |
|
1nn |
|
41 |
40
|
a1i |
|
42 |
39 41
|
nnmulcld |
|
43 |
42
|
nnge1d |
|
44 |
20 20 16
|
ledivmuld |
|
45 |
43 44
|
mpbird |
|
46 |
18 31 20 37 45
|
letrd |
|
47 |
46
|
adantr |
|
48 |
|
ltle |
|
49 |
19 28 48
|
sylancr |
|
50 |
49
|
imp |
|
51 |
47 50
|
jca |
|
52 |
|
letr |
|
53 |
30 51 52
|
sylc |
|
54 |
53
|
olcd |
|
55 |
54
|
2a1d |
|
56 |
|
pm3.21 |
|
57 |
56
|
adantl |
|
58 |
33 16
|
rpdivcld |
|
59 |
58
|
rpred |
|
60 |
18 59 28
|
3jca |
|
61 |
60
|
adantr |
|
62 |
|
min1 |
|
63 |
34 19 62
|
sylancl |
|
64 |
32 34 16 63
|
lediv1dd |
|
65 |
64
|
anim1i |
|
66 |
|
letr |
|
67 |
61 65 66
|
sylc |
|
68 |
67
|
ex |
|
69 |
68
|
adantr |
|
70 |
69
|
orim2d |
|
71 |
57 70
|
imim12d |
|
72 |
55 71 20 28
|
ltlecasei |
|
73 |
72
|
ralimdvva |
|
74 |
|
oveq1 |
|
75 |
74
|
breq1d |
|
76 |
75
|
orbi2d |
|
77 |
76
|
imbi2d |
|
78 |
77
|
2ralbidv |
|
79 |
78
|
rspcev |
|
80 |
10 73 79
|
syl6an |
|
81 |
80
|
rexlimdva |
|
82 |
6 81
|
mpd |
|