Metamath Proof Explorer


Theorem aalioulem5

Description: Lemma for aaliou . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aalioulem2.a N = deg F
aalioulem2.b φ F Poly
aalioulem2.c φ N
aalioulem2.d φ A
aalioulem3.e φ F A = 0
Assertion aalioulem5 φ x + p q F p q 0 A = p q x q N A p q

Proof

Step Hyp Ref Expression
1 aalioulem2.a N = deg F
2 aalioulem2.b φ F Poly
3 aalioulem2.c φ N
4 aalioulem2.d φ A
5 aalioulem3.e φ F A = 0
6 1 2 3 4 5 aalioulem4 φ a + p q F p q 0 A p q 1 A = p q a q N A p q
7 simpr φ a + a +
8 1rp 1 +
9 ifcl a + 1 + if a 1 a 1 +
10 7 8 9 sylancl φ a + if a 1 a 1 +
11 10 adantr φ a + p q if a 1 a 1 +
12 simprr φ a + p q q
13 12 nnrpd φ a + p q q +
14 3 ad2antrr φ a + p q N
15 14 nnzd φ a + p q N
16 13 15 rpexpcld φ a + p q q N +
17 11 16 rpdivcld φ a + p q if a 1 a 1 q N +
18 17 rpred φ a + p q if a 1 a 1 q N
19 1re 1
20 19 a1i φ a + p q 1
21 4 ad2antrr φ a + p q A
22 znq p q p q
23 qre p q p q
24 22 23 syl p q p q
25 24 adantl φ a + p q p q
26 21 25 resubcld φ a + p q A p q
27 26 recnd φ a + p q A p q
28 27 abscld φ a + p q A p q
29 18 20 28 3jca φ a + p q if a 1 a 1 q N 1 A p q
30 29 adantr φ a + p q 1 < A p q if a 1 a 1 q N 1 A p q
31 16 rprecred φ a + p q 1 q N
32 11 rpred φ a + p q if a 1 a 1
33 simplr φ a + p q a +
34 33 rpred φ a + p q a
35 min2 a 1 if a 1 a 1 1
36 34 19 35 sylancl φ a + p q if a 1 a 1 1
37 32 20 16 36 lediv1dd φ a + p q if a 1 a 1 q N 1 q N
38 14 nnnn0d φ a + p q N 0
39 12 38 nnexpcld φ a + p q q N
40 1nn 1
41 40 a1i φ a + p q 1
42 39 41 nnmulcld φ a + p q q N 1
43 42 nnge1d φ a + p q 1 q N 1
44 20 20 16 ledivmuld φ a + p q 1 q N 1 1 q N 1
45 43 44 mpbird φ a + p q 1 q N 1
46 18 31 20 37 45 letrd φ a + p q if a 1 a 1 q N 1
47 46 adantr φ a + p q 1 < A p q if a 1 a 1 q N 1
48 ltle 1 A p q 1 < A p q 1 A p q
49 19 28 48 sylancr φ a + p q 1 < A p q 1 A p q
50 49 imp φ a + p q 1 < A p q 1 A p q
51 47 50 jca φ a + p q 1 < A p q if a 1 a 1 q N 1 1 A p q
52 letr if a 1 a 1 q N 1 A p q if a 1 a 1 q N 1 1 A p q if a 1 a 1 q N A p q
53 30 51 52 sylc φ a + p q 1 < A p q if a 1 a 1 q N A p q
54 53 olcd φ a + p q 1 < A p q A = p q if a 1 a 1 q N A p q
55 54 2a1d φ a + p q 1 < A p q F p q 0 A p q 1 A = p q a q N A p q F p q 0 A = p q if a 1 a 1 q N A p q
56 pm3.21 A p q 1 F p q 0 F p q 0 A p q 1
57 56 adantl φ a + p q A p q 1 F p q 0 F p q 0 A p q 1
58 33 16 rpdivcld φ a + p q a q N +
59 58 rpred φ a + p q a q N
60 18 59 28 3jca φ a + p q if a 1 a 1 q N a q N A p q
61 60 adantr φ a + p q a q N A p q if a 1 a 1 q N a q N A p q
62 min1 a 1 if a 1 a 1 a
63 34 19 62 sylancl φ a + p q if a 1 a 1 a
64 32 34 16 63 lediv1dd φ a + p q if a 1 a 1 q N a q N
65 64 anim1i φ a + p q a q N A p q if a 1 a 1 q N a q N a q N A p q
66 letr if a 1 a 1 q N a q N A p q if a 1 a 1 q N a q N a q N A p q if a 1 a 1 q N A p q
67 61 65 66 sylc φ a + p q a q N A p q if a 1 a 1 q N A p q
68 67 ex φ a + p q a q N A p q if a 1 a 1 q N A p q
69 68 adantr φ a + p q A p q 1 a q N A p q if a 1 a 1 q N A p q
70 69 orim2d φ a + p q A p q 1 A = p q a q N A p q A = p q if a 1 a 1 q N A p q
71 57 70 imim12d φ a + p q A p q 1 F p q 0 A p q 1 A = p q a q N A p q F p q 0 A = p q if a 1 a 1 q N A p q
72 55 71 20 28 ltlecasei φ a + p q F p q 0 A p q 1 A = p q a q N A p q F p q 0 A = p q if a 1 a 1 q N A p q
73 72 ralimdvva φ a + p q F p q 0 A p q 1 A = p q a q N A p q p q F p q 0 A = p q if a 1 a 1 q N A p q
74 oveq1 x = if a 1 a 1 x q N = if a 1 a 1 q N
75 74 breq1d x = if a 1 a 1 x q N A p q if a 1 a 1 q N A p q
76 75 orbi2d x = if a 1 a 1 A = p q x q N A p q A = p q if a 1 a 1 q N A p q
77 76 imbi2d x = if a 1 a 1 F p q 0 A = p q x q N A p q F p q 0 A = p q if a 1 a 1 q N A p q
78 77 2ralbidv x = if a 1 a 1 p q F p q 0 A = p q x q N A p q p q F p q 0 A = p q if a 1 a 1 q N A p q
79 78 rspcev if a 1 a 1 + p q F p q 0 A = p q if a 1 a 1 q N A p q x + p q F p q 0 A = p q x q N A p q
80 10 73 79 syl6an φ a + p q F p q 0 A p q 1 A = p q a q N A p q x + p q F p q 0 A = p q x q N A p q
81 80 rexlimdva φ a + p q F p q 0 A p q 1 A = p q a q N A p q x + p q F p q 0 A = p q x q N A p q
82 6 81 mpd φ x + p q F p q 0 A = p q x q N A p q