Step |
Hyp |
Ref |
Expression |
1 |
|
aalioulem2.a |
|
2 |
|
aalioulem2.b |
|
3 |
|
aalioulem2.c |
|
4 |
|
aalioulem2.d |
|
5 |
|
aalioulem3.e |
|
6 |
1 2 3 4
|
aalioulem2 |
|
7 |
1 2 3 4 5
|
aalioulem5 |
|
8 |
|
reeanv |
|
9 |
6 7 8
|
sylanbrc |
|
10 |
|
r19.26-2 |
|
11 |
|
ifcl |
|
12 |
11
|
adantl |
|
13 |
|
simpr |
|
14 |
11
|
ad2antlr |
|
15 |
|
nnrp |
|
16 |
15
|
ad2antll |
|
17 |
3
|
ad2antrr |
|
18 |
17
|
nnzd |
|
19 |
16 18
|
rpexpcld |
|
20 |
14 19
|
rpdivcld |
|
21 |
20
|
rpred |
|
22 |
|
simplrl |
|
23 |
22 19
|
rpdivcld |
|
24 |
23
|
rpred |
|
25 |
4
|
ad2antrr |
|
26 |
|
znq |
|
27 |
|
qre |
|
28 |
26 27
|
syl |
|
29 |
28
|
adantl |
|
30 |
25 29
|
resubcld |
|
31 |
30
|
recnd |
|
32 |
31
|
abscld |
|
33 |
21 24 32
|
3jca |
|
34 |
33
|
adantr |
|
35 |
14
|
rpred |
|
36 |
22
|
rpred |
|
37 |
|
simplrr |
|
38 |
37
|
rpred |
|
39 |
|
min1 |
|
40 |
36 38 39
|
syl2anc |
|
41 |
35 36 19 40
|
lediv1dd |
|
42 |
41
|
anim1i |
|
43 |
|
letr |
|
44 |
34 42 43
|
sylc |
|
45 |
44
|
ex |
|
46 |
45
|
adantr |
|
47 |
46
|
orim2d |
|
48 |
13 47
|
embantd |
|
49 |
48
|
adantrd |
|
50 |
|
simpr |
|
51 |
37 19
|
rpdivcld |
|
52 |
51
|
rpred |
|
53 |
21 52 32
|
3jca |
|
54 |
53
|
adantr |
|
55 |
|
min2 |
|
56 |
36 38 55
|
syl2anc |
|
57 |
35 38 19 56
|
lediv1dd |
|
58 |
57
|
anim1i |
|
59 |
|
letr |
|
60 |
54 58 59
|
sylc |
|
61 |
60
|
ex |
|
62 |
61
|
adantr |
|
63 |
62
|
orim2d |
|
64 |
50 63
|
embantd |
|
65 |
64
|
adantld |
|
66 |
49 65
|
pm2.61dane |
|
67 |
66
|
ralimdvva |
|
68 |
|
oveq1 |
|
69 |
68
|
breq1d |
|
70 |
69
|
orbi2d |
|
71 |
70
|
2ralbidv |
|
72 |
71
|
rspcev |
|
73 |
12 67 72
|
syl6an |
|
74 |
10 73
|
syl5bir |
|
75 |
74
|
rexlimdvva |
|
76 |
9 75
|
mpd |
|