Metamath Proof Explorer


Theorem aalioulem6

Description: Lemma for aaliou . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aalioulem2.a N = deg F
aalioulem2.b φ F Poly
aalioulem2.c φ N
aalioulem2.d φ A
aalioulem3.e φ F A = 0
Assertion aalioulem6 φ x + p q A = p q x q N A p q

Proof

Step Hyp Ref Expression
1 aalioulem2.a N = deg F
2 aalioulem2.b φ F Poly
3 aalioulem2.c φ N
4 aalioulem2.d φ A
5 aalioulem3.e φ F A = 0
6 1 2 3 4 aalioulem2 φ a + p q F p q = 0 A = p q a q N A p q
7 1 2 3 4 5 aalioulem5 φ b + p q F p q 0 A = p q b q N A p q
8 reeanv a + b + p q F p q = 0 A = p q a q N A p q p q F p q 0 A = p q b q N A p q a + p q F p q = 0 A = p q a q N A p q b + p q F p q 0 A = p q b q N A p q
9 6 7 8 sylanbrc φ a + b + p q F p q = 0 A = p q a q N A p q p q F p q 0 A = p q b q N A p q
10 r19.26-2 p q F p q = 0 A = p q a q N A p q F p q 0 A = p q b q N A p q p q F p q = 0 A = p q a q N A p q p q F p q 0 A = p q b q N A p q
11 ifcl a + b + if a b a b +
12 11 adantl φ a + b + if a b a b +
13 simpr φ a + b + p q F p q = 0 F p q = 0
14 11 ad2antlr φ a + b + p q if a b a b +
15 nnrp q q +
16 15 ad2antll φ a + b + p q q +
17 3 ad2antrr φ a + b + p q N
18 17 nnzd φ a + b + p q N
19 16 18 rpexpcld φ a + b + p q q N +
20 14 19 rpdivcld φ a + b + p q if a b a b q N +
21 20 rpred φ a + b + p q if a b a b q N
22 simplrl φ a + b + p q a +
23 22 19 rpdivcld φ a + b + p q a q N +
24 23 rpred φ a + b + p q a q N
25 4 ad2antrr φ a + b + p q A
26 znq p q p q
27 qre p q p q
28 26 27 syl p q p q
29 28 adantl φ a + b + p q p q
30 25 29 resubcld φ a + b + p q A p q
31 30 recnd φ a + b + p q A p q
32 31 abscld φ a + b + p q A p q
33 21 24 32 3jca φ a + b + p q if a b a b q N a q N A p q
34 33 adantr φ a + b + p q a q N A p q if a b a b q N a q N A p q
35 14 rpred φ a + b + p q if a b a b
36 22 rpred φ a + b + p q a
37 simplrr φ a + b + p q b +
38 37 rpred φ a + b + p q b
39 min1 a b if a b a b a
40 36 38 39 syl2anc φ a + b + p q if a b a b a
41 35 36 19 40 lediv1dd φ a + b + p q if a b a b q N a q N
42 41 anim1i φ a + b + p q a q N A p q if a b a b q N a q N a q N A p q
43 letr if a b a b q N a q N A p q if a b a b q N a q N a q N A p q if a b a b q N A p q
44 34 42 43 sylc φ a + b + p q a q N A p q if a b a b q N A p q
45 44 ex φ a + b + p q a q N A p q if a b a b q N A p q
46 45 adantr φ a + b + p q F p q = 0 a q N A p q if a b a b q N A p q
47 46 orim2d φ a + b + p q F p q = 0 A = p q a q N A p q A = p q if a b a b q N A p q
48 13 47 embantd φ a + b + p q F p q = 0 F p q = 0 A = p q a q N A p q A = p q if a b a b q N A p q
49 48 adantrd φ a + b + p q F p q = 0 F p q = 0 A = p q a q N A p q F p q 0 A = p q b q N A p q A = p q if a b a b q N A p q
50 simpr φ a + b + p q F p q 0 F p q 0
51 37 19 rpdivcld φ a + b + p q b q N +
52 51 rpred φ a + b + p q b q N
53 21 52 32 3jca φ a + b + p q if a b a b q N b q N A p q
54 53 adantr φ a + b + p q b q N A p q if a b a b q N b q N A p q
55 min2 a b if a b a b b
56 36 38 55 syl2anc φ a + b + p q if a b a b b
57 35 38 19 56 lediv1dd φ a + b + p q if a b a b q N b q N
58 57 anim1i φ a + b + p q b q N A p q if a b a b q N b q N b q N A p q
59 letr if a b a b q N b q N A p q if a b a b q N b q N b q N A p q if a b a b q N A p q
60 54 58 59 sylc φ a + b + p q b q N A p q if a b a b q N A p q
61 60 ex φ a + b + p q b q N A p q if a b a b q N A p q
62 61 adantr φ a + b + p q F p q 0 b q N A p q if a b a b q N A p q
63 62 orim2d φ a + b + p q F p q 0 A = p q b q N A p q A = p q if a b a b q N A p q
64 50 63 embantd φ a + b + p q F p q 0 F p q 0 A = p q b q N A p q A = p q if a b a b q N A p q
65 64 adantld φ a + b + p q F p q 0 F p q = 0 A = p q a q N A p q F p q 0 A = p q b q N A p q A = p q if a b a b q N A p q
66 49 65 pm2.61dane φ a + b + p q F p q = 0 A = p q a q N A p q F p q 0 A = p q b q N A p q A = p q if a b a b q N A p q
67 66 ralimdvva φ a + b + p q F p q = 0 A = p q a q N A p q F p q 0 A = p q b q N A p q p q A = p q if a b a b q N A p q
68 oveq1 x = if a b a b x q N = if a b a b q N
69 68 breq1d x = if a b a b x q N A p q if a b a b q N A p q
70 69 orbi2d x = if a b a b A = p q x q N A p q A = p q if a b a b q N A p q
71 70 2ralbidv x = if a b a b p q A = p q x q N A p q p q A = p q if a b a b q N A p q
72 71 rspcev if a b a b + p q A = p q if a b a b q N A p q x + p q A = p q x q N A p q
73 12 67 72 syl6an φ a + b + p q F p q = 0 A = p q a q N A p q F p q 0 A = p q b q N A p q x + p q A = p q x q N A p q
74 10 73 syl5bir φ a + b + p q F p q = 0 A = p q a q N A p q p q F p q 0 A = p q b q N A p q x + p q A = p q x q N A p q
75 74 rexlimdvva φ a + b + p q F p q = 0 A = p q a q N A p q p q F p q 0 A = p q b q N A p q x + p q A = p q x q N A p q
76 9 75 mpd φ x + p q A = p q x q N A p q