Metamath Proof Explorer


Theorem aannenlem3

Description: The algebraic numbers are countable. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypothesis aannenlem.a H = a 0 b | c d Poly | d 0 𝑝 deg d a e 0 coeff d e a c b = 0
Assertion aannenlem3 𝔸

Proof

Step Hyp Ref Expression
1 aannenlem.a H = a 0 b | c d Poly | d 0 𝑝 deg d a e 0 coeff d e a c b = 0
2 1 aannenlem2 𝔸 = ran H
3 omelon ω On
4 nn0ennn 0
5 nnenom ω
6 4 5 entri 0 ω
7 6 ensymi ω 0
8 isnumi ω On ω 0 0 dom card
9 3 7 8 mp2an 0 dom card
10 cnex V
11 10 rabex b | c d Poly | d 0 𝑝 deg d a e 0 coeff d e a c b = 0 V
12 11 1 fnmpti H Fn 0
13 dffn4 H Fn 0 H : 0 onto ran H
14 12 13 mpbi H : 0 onto ran H
15 fodomnum 0 dom card H : 0 onto ran H ran H 0
16 9 14 15 mp2 ran H 0
17 domentr ran H 0 0 ω ran H ω
18 16 6 17 mp2an ran H ω
19 fvelrnb H Fn 0 f ran H g 0 H g = f
20 12 19 ax-mp f ran H g 0 H g = f
21 1 aannenlem1 g 0 H g Fin
22 eleq1 H g = f H g Fin f Fin
23 21 22 syl5ibcom g 0 H g = f f Fin
24 23 rexlimiv g 0 H g = f f Fin
25 20 24 sylbi f ran H f Fin
26 25 ssriv ran H Fin
27 aasscn 𝔸
28 2 27 eqsstrri ran H
29 soss ran H f Or f Or ran H
30 28 29 ax-mp f Or f Or ran H
31 iunfictbso ran H ω ran H Fin f Or ran H ran H ω
32 18 26 30 31 mp3an12i f Or ran H ω
33 2 32 eqbrtrid f Or 𝔸 ω
34 cnso f f Or
35 33 34 exlimiiv 𝔸 ω
36 5 ensymi ω
37 domentr 𝔸 ω ω 𝔸
38 35 36 37 mp2an 𝔸
39 10 27 ssexi 𝔸 V
40 nnssq
41 qssaa 𝔸
42 40 41 sstri 𝔸
43 ssdomg 𝔸 V 𝔸 𝔸
44 39 42 43 mp2 𝔸
45 sbth 𝔸 𝔸 𝔸
46 38 44 45 mp2an 𝔸