Metamath Proof Explorer


Theorem ab2rexex2

Description: Existence of an existentially restricted class abstraction. ph normally has free-variable parameters x , y , and z . Compare abrexex2 . (Contributed by NM, 20-Sep-2011)

Ref Expression
Hypotheses ab2rexex2.1 A V
ab2rexex2.2 B V
ab2rexex2.3 z | φ V
Assertion ab2rexex2 z | x A y B φ V

Proof

Step Hyp Ref Expression
1 ab2rexex2.1 A V
2 ab2rexex2.2 B V
3 ab2rexex2.3 z | φ V
4 2 3 abrexex2 z | y B φ V
5 1 4 abrexex2 z | x A y B φ V