Metamath Proof Explorer


Theorem abbiOLD

Description: Obsolete proof of abbi as of 7-Jan-2024. (Contributed by NM, 25-Nov-2013) (Revised by Mario Carneiro, 11-Aug-2016) (Proof shortened by Wolf Lammen, 16-Nov-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion abbiOLD x φ ψ x | φ = x | ψ

Proof

Step Hyp Ref Expression
1 hbab1 y x | φ x y x | φ
2 hbab1 y x | ψ x y x | ψ
3 1 2 cleqh x | φ = x | ψ x x x | φ x x | ψ
4 abid x x | φ φ
5 abid x x | ψ ψ
6 4 5 bibi12i x x | φ x x | ψ φ ψ
7 6 albii x x x | φ x x | ψ x φ ψ
8 3 7 bitr2i x φ ψ x | φ = x | ψ