Metamath Proof Explorer


Theorem abciffcbatnabciffncba

Description: Operands in a biconditional expression converted negated. Additionally biconditional converted to show antecedent implies sequent. Closed form. (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Assertion abciffcbatnabciffncba ¬ φ ψ χ ¬ χ ψ φ

Proof

Step Hyp Ref Expression
1 an31 φ ψ χ χ ψ φ
2 notbi φ ψ χ χ ψ φ ¬ φ ψ χ ¬ χ ψ φ
3 2 biimpi φ ψ χ χ ψ φ ¬ φ ψ χ ¬ χ ψ φ
4 1 3 ax-mp ¬ φ ψ χ ¬ χ ψ φ
5 4 biimpi ¬ φ ψ χ ¬ χ ψ φ