Metamath Proof Explorer


Theorem abciffcbatnabciffncbai

Description: Operands in a biconditional expression converted negated. Additionally biconditional converted to show antecedent implies sequent. (Contributed by Jarvin Udandy, 7-Sep-2020)

Ref Expression
Hypothesis abciffcbatnabciffncbai.1 φ ψ χ χ ψ φ
Assertion abciffcbatnabciffncbai ¬ φ ψ χ ¬ χ ψ φ

Proof

Step Hyp Ref Expression
1 abciffcbatnabciffncbai.1 φ ψ χ χ ψ φ
2 notbi φ ψ χ χ ψ φ ¬ φ ψ χ ¬ χ ψ φ
3 2 biimpi φ ψ χ χ ψ φ ¬ φ ψ χ ¬ χ ψ φ
4 1 3 ax-mp ¬ φ ψ χ ¬ χ ψ φ
5 4 biimpi ¬ φ ψ χ ¬ χ ψ φ