Metamath Proof Explorer


Theorem abelth2

Description: Abel's theorem, restricted to the [ 0 , 1 ] interval. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Hypotheses abelth2.1 φ A : 0
abelth2.2 φ seq 0 + A dom
abelth2.3 F = x 0 1 n 0 A n x n
Assertion abelth2 φ F : 0 1 cn

Proof

Step Hyp Ref Expression
1 abelth2.1 φ A : 0
2 abelth2.2 φ seq 0 + A dom
3 abelth2.3 F = x 0 1 n 0 A n x n
4 unitssre 0 1
5 ax-resscn
6 4 5 sstri 0 1
7 6 a1i φ 0 1
8 1re 1
9 simpr φ z 0 1 z 0 1
10 elicc01 z 0 1 z 0 z z 1
11 9 10 sylib φ z 0 1 z 0 z z 1
12 11 simp1d φ z 0 1 z
13 resubcl 1 z 1 z
14 8 12 13 sylancr φ z 0 1 1 z
15 14 leidd φ z 0 1 1 z 1 z
16 1red φ z 0 1 1
17 11 simp3d φ z 0 1 z 1
18 12 16 17 abssubge0d φ z 0 1 1 z = 1 z
19 11 simp2d φ z 0 1 0 z
20 12 19 absidd φ z 0 1 z = z
21 20 oveq2d φ z 0 1 1 z = 1 z
22 21 oveq2d φ z 0 1 1 1 z = 1 1 z
23 14 recnd φ z 0 1 1 z
24 23 mulid2d φ z 0 1 1 1 z = 1 z
25 22 24 eqtrd φ z 0 1 1 1 z = 1 z
26 15 18 25 3brtr4d φ z 0 1 1 z 1 1 z
27 7 26 ssrabdv φ 0 1 z | 1 z 1 1 z
28 27 resmptd φ x z | 1 z 1 1 z n 0 A n x n 0 1 = x 0 1 n 0 A n x n
29 28 3 eqtr4di φ x z | 1 z 1 1 z n 0 A n x n 0 1 = F
30 1red φ 1
31 0le1 0 1
32 31 a1i φ 0 1
33 eqid z | 1 z 1 1 z = z | 1 z 1 1 z
34 eqid x z | 1 z 1 1 z n 0 A n x n = x z | 1 z 1 1 z n 0 A n x n
35 1 2 30 32 33 34 abelth φ x z | 1 z 1 1 z n 0 A n x n : z | 1 z 1 1 z cn
36 rescncf 0 1 z | 1 z 1 1 z x z | 1 z 1 1 z n 0 A n x n : z | 1 z 1 1 z cn x z | 1 z 1 1 z n 0 A n x n 0 1 : 0 1 cn
37 27 35 36 sylc φ x z | 1 z 1 1 z n 0 A n x n 0 1 : 0 1 cn
38 29 37 eqeltrrd φ F : 0 1 cn