Metamath Proof Explorer


Theorem abelthlem5

Description: Lemma for abelth . (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Hypotheses abelth.1 φ A : 0
abelth.2 φ seq 0 + A dom
abelth.3 φ M
abelth.4 φ 0 M
abelth.5 S = z | 1 z M 1 z
abelth.6 F = x S n 0 A n x n
abelth.7 φ seq 0 + A 0
Assertion abelthlem5 φ X 0 ball abs 1 seq 0 + k 0 seq 0 + A k X k dom

Proof

Step Hyp Ref Expression
1 abelth.1 φ A : 0
2 abelth.2 φ seq 0 + A dom
3 abelth.3 φ M
4 abelth.4 φ 0 M
5 abelth.5 S = z | 1 z M 1 z
6 abelth.6 F = x S n 0 A n x n
7 abelth.7 φ seq 0 + A 0
8 nn0uz 0 = 0
9 0zd φ 0
10 1rp 1 +
11 10 a1i φ 1 +
12 eqidd φ m 0 seq 0 + A m = seq 0 + A m
13 8 9 11 12 7 climi0 φ j 0 m j seq 0 + A m < 1
14 13 adantr φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1
15 simprl φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 j 0
16 oveq2 n = i X n = X i
17 eqid n 0 X n = n 0 X n
18 ovex X i V
19 16 17 18 fvmpt i 0 n 0 X n i = X i
20 19 adantl φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i 0 n 0 X n i = X i
21 cnxmet abs ∞Met
22 0cn 0
23 1xr 1 *
24 blssm abs ∞Met 0 1 * 0 ball abs 1
25 21 22 23 24 mp3an 0 ball abs 1
26 simplr φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 X 0 ball abs 1
27 25 26 sselid φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 X
28 27 abscld φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 X
29 reexpcl X i 0 X i
30 28 29 sylan φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i 0 X i
31 20 30 eqeltrd φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i 0 n 0 X n i
32 fveq2 k = i seq 0 + A k = seq 0 + A i
33 oveq2 k = i X k = X i
34 32 33 oveq12d k = i seq 0 + A k X k = seq 0 + A i X i
35 eqid k 0 seq 0 + A k X k = k 0 seq 0 + A k X k
36 ovex seq 0 + A i X i V
37 34 35 36 fvmpt i 0 k 0 seq 0 + A k X k i = seq 0 + A i X i
38 37 adantl φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i 0 k 0 seq 0 + A k X k i = seq 0 + A i X i
39 1 ffvelrnda φ x 0 A x
40 8 9 39 serf φ seq 0 + A : 0
41 40 ad2antrr φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 seq 0 + A : 0
42 41 ffvelrnda φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i 0 seq 0 + A i
43 expcl X i 0 X i
44 27 43 sylan φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i 0 X i
45 42 44 mulcld φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i 0 seq 0 + A i X i
46 38 45 eqeltrd φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i 0 k 0 seq 0 + A k X k i
47 28 recnd φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 X
48 absidm X X = X
49 27 48 syl φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 X = X
50 eqid abs = abs
51 50 cnmetdval X 0 X abs 0 = X 0
52 27 22 51 sylancl φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 X abs 0 = X 0
53 27 subid1d φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 X 0 = X
54 53 fveq2d φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 X 0 = X
55 52 54 eqtrd φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 X abs 0 = X
56 elbl3 abs ∞Met 1 * 0 X X 0 ball abs 1 X abs 0 < 1
57 21 23 56 mpanl12 0 X X 0 ball abs 1 X abs 0 < 1
58 22 27 57 sylancr φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 X 0 ball abs 1 X abs 0 < 1
59 26 58 mpbid φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 X abs 0 < 1
60 55 59 eqbrtrrd φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 X < 1
61 49 60 eqbrtrd φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 X < 1
62 47 61 20 geolim φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 seq 0 + n 0 X n 1 1 X
63 climrel Rel
64 63 releldmi seq 0 + n 0 X n 1 1 X seq 0 + n 0 X n dom
65 62 64 syl φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 seq 0 + n 0 X n dom
66 1red φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 1
67 41 adantr φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j seq 0 + A : 0
68 eluznn0 j 0 i j i 0
69 15 68 sylan φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j i 0
70 67 69 ffvelrnd φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j seq 0 + A i
71 69 44 syldan φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j X i
72 70 71 absmuld φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j seq 0 + A i X i = seq 0 + A i X i
73 27 adantr φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j X
74 73 69 absexpd φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j X i = X i
75 74 oveq2d φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j seq 0 + A i X i = seq 0 + A i X i
76 72 75 eqtrd φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j seq 0 + A i X i = seq 0 + A i X i
77 70 abscld φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j seq 0 + A i
78 1red φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j 1
79 69 30 syldan φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j X i
80 71 absge0d φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j 0 X i
81 80 74 breqtrd φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j 0 X i
82 simprr φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 m j seq 0 + A m < 1
83 2fveq3 m = i seq 0 + A m = seq 0 + A i
84 83 breq1d m = i seq 0 + A m < 1 seq 0 + A i < 1
85 84 rspccva m j seq 0 + A m < 1 i j seq 0 + A i < 1
86 82 85 sylan φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j seq 0 + A i < 1
87 1re 1
88 ltle seq 0 + A i 1 seq 0 + A i < 1 seq 0 + A i 1
89 77 87 88 sylancl φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j seq 0 + A i < 1 seq 0 + A i 1
90 86 89 mpd φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j seq 0 + A i 1
91 77 78 79 81 90 lemul1ad φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j seq 0 + A i X i 1 X i
92 76 91 eqbrtrd φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j seq 0 + A i X i 1 X i
93 69 37 syl φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j k 0 seq 0 + A k X k i = seq 0 + A i X i
94 93 fveq2d φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j k 0 seq 0 + A k X k i = seq 0 + A i X i
95 69 19 syl φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j n 0 X n i = X i
96 95 oveq2d φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j 1 n 0 X n i = 1 X i
97 92 94 96 3brtr4d φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 i j k 0 seq 0 + A k X k i 1 n 0 X n i
98 8 15 31 46 65 66 97 cvgcmpce φ X 0 ball abs 1 j 0 m j seq 0 + A m < 1 seq 0 + k 0 seq 0 + A k X k dom
99 14 98 rexlimddv φ X 0 ball abs 1 seq 0 + k 0 seq 0 + A k X k dom