Step |
Hyp |
Ref |
Expression |
1 |
|
abelth.1 |
|
2 |
|
abelth.2 |
|
3 |
|
abelth.3 |
|
4 |
|
abelth.4 |
|
5 |
|
abelth.5 |
|
6 |
|
abelth.6 |
|
7 |
|
abelth.7 |
|
8 |
|
nn0uz |
|
9 |
|
0zd |
|
10 |
|
1rp |
|
11 |
10
|
a1i |
|
12 |
|
eqidd |
|
13 |
8 9 11 12 7
|
climi0 |
|
14 |
13
|
adantr |
|
15 |
|
simprl |
|
16 |
|
oveq2 |
|
17 |
|
eqid |
|
18 |
|
ovex |
|
19 |
16 17 18
|
fvmpt |
|
20 |
19
|
adantl |
|
21 |
|
cnxmet |
|
22 |
|
0cn |
|
23 |
|
1xr |
|
24 |
|
blssm |
|
25 |
21 22 23 24
|
mp3an |
|
26 |
|
simplr |
|
27 |
25 26
|
sselid |
|
28 |
27
|
abscld |
|
29 |
|
reexpcl |
|
30 |
28 29
|
sylan |
|
31 |
20 30
|
eqeltrd |
|
32 |
|
fveq2 |
|
33 |
|
oveq2 |
|
34 |
32 33
|
oveq12d |
|
35 |
|
eqid |
|
36 |
|
ovex |
|
37 |
34 35 36
|
fvmpt |
|
38 |
37
|
adantl |
|
39 |
1
|
ffvelrnda |
|
40 |
8 9 39
|
serf |
|
41 |
40
|
ad2antrr |
|
42 |
41
|
ffvelrnda |
|
43 |
|
expcl |
|
44 |
27 43
|
sylan |
|
45 |
42 44
|
mulcld |
|
46 |
38 45
|
eqeltrd |
|
47 |
28
|
recnd |
|
48 |
|
absidm |
|
49 |
27 48
|
syl |
|
50 |
|
eqid |
|
51 |
50
|
cnmetdval |
|
52 |
27 22 51
|
sylancl |
|
53 |
27
|
subid1d |
|
54 |
53
|
fveq2d |
|
55 |
52 54
|
eqtrd |
|
56 |
|
elbl3 |
|
57 |
21 23 56
|
mpanl12 |
|
58 |
22 27 57
|
sylancr |
|
59 |
26 58
|
mpbid |
|
60 |
55 59
|
eqbrtrrd |
|
61 |
49 60
|
eqbrtrd |
|
62 |
47 61 20
|
geolim |
|
63 |
|
climrel |
|
64 |
63
|
releldmi |
|
65 |
62 64
|
syl |
|
66 |
|
1red |
|
67 |
41
|
adantr |
|
68 |
|
eluznn0 |
|
69 |
15 68
|
sylan |
|
70 |
67 69
|
ffvelrnd |
|
71 |
69 44
|
syldan |
|
72 |
70 71
|
absmuld |
|
73 |
27
|
adantr |
|
74 |
73 69
|
absexpd |
|
75 |
74
|
oveq2d |
|
76 |
72 75
|
eqtrd |
|
77 |
70
|
abscld |
|
78 |
|
1red |
|
79 |
69 30
|
syldan |
|
80 |
71
|
absge0d |
|
81 |
80 74
|
breqtrd |
|
82 |
|
simprr |
|
83 |
|
2fveq3 |
|
84 |
83
|
breq1d |
|
85 |
84
|
rspccva |
|
86 |
82 85
|
sylan |
|
87 |
|
1re |
|
88 |
|
ltle |
|
89 |
77 87 88
|
sylancl |
|
90 |
86 89
|
mpd |
|
91 |
77 78 79 81 90
|
lemul1ad |
|
92 |
76 91
|
eqbrtrd |
|
93 |
69 37
|
syl |
|
94 |
93
|
fveq2d |
|
95 |
69 19
|
syl |
|
96 |
95
|
oveq2d |
|
97 |
92 94 96
|
3brtr4d |
|
98 |
8 15 31 46 65 66 97
|
cvgcmpce |
|
99 |
14 98
|
rexlimddv |
|