Metamath Proof Explorer


Theorem abelthlem7

Description: Lemma for abelth . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Hypotheses abelth.1 φ A : 0
abelth.2 φ seq 0 + A dom
abelth.3 φ M
abelth.4 φ 0 M
abelth.5 S = z | 1 z M 1 z
abelth.6 F = x S n 0 A n x n
abelth.7 φ seq 0 + A 0
abelthlem6.1 φ X S 1
abelthlem7.2 φ R +
abelthlem7.3 φ N 0
abelthlem7.4 φ k N seq 0 + A k < R
abelthlem7.5 φ 1 X < R n = 0 N 1 seq 0 + A n + 1
Assertion abelthlem7 φ F X < M + 1 R

Proof

Step Hyp Ref Expression
1 abelth.1 φ A : 0
2 abelth.2 φ seq 0 + A dom
3 abelth.3 φ M
4 abelth.4 φ 0 M
5 abelth.5 S = z | 1 z M 1 z
6 abelth.6 F = x S n 0 A n x n
7 abelth.7 φ seq 0 + A 0
8 abelthlem6.1 φ X S 1
9 abelthlem7.2 φ R +
10 abelthlem7.3 φ N 0
11 abelthlem7.4 φ k N seq 0 + A k < R
12 abelthlem7.5 φ 1 X < R n = 0 N 1 seq 0 + A n + 1
13 1 2 3 4 5 6 abelthlem4 φ F : S
14 8 eldifad φ X S
15 13 14 ffvelrnd φ F X
16 15 abscld φ F X
17 ax-1cn 1
18 1 2 3 4 5 6 7 8 abelthlem7a φ X 1 X M 1 X
19 18 simpld φ X
20 subcl 1 X 1 X
21 17 19 20 sylancr φ 1 X
22 fzfid φ 0 N 1 Fin
23 elfznn0 n 0 N 1 n 0
24 nn0uz 0 = 0
25 0zd φ 0
26 1 ffvelrnda φ n 0 A n
27 24 25 26 serf φ seq 0 + A : 0
28 27 ffvelrnda φ n 0 seq 0 + A n
29 expcl X n 0 X n
30 19 29 sylan φ n 0 X n
31 28 30 mulcld φ n 0 seq 0 + A n X n
32 23 31 sylan2 φ n 0 N 1 seq 0 + A n X n
33 22 32 fsumcl φ n = 0 N 1 seq 0 + A n X n
34 21 33 mulcld φ 1 X n = 0 N 1 seq 0 + A n X n
35 34 abscld φ 1 X n = 0 N 1 seq 0 + A n X n
36 eqid N = N
37 10 nn0zd φ N
38 eluznn0 N 0 n N n 0
39 10 38 sylan φ n N n 0
40 fveq2 k = n seq 0 + A k = seq 0 + A n
41 oveq2 k = n X k = X n
42 40 41 oveq12d k = n seq 0 + A k X k = seq 0 + A n X n
43 eqid k 0 seq 0 + A k X k = k 0 seq 0 + A k X k
44 ovex seq 0 + A n X n V
45 42 43 44 fvmpt n 0 k 0 seq 0 + A k X k n = seq 0 + A n X n
46 39 45 syl φ n N k 0 seq 0 + A k X k n = seq 0 + A n X n
47 39 31 syldan φ n N seq 0 + A n X n
48 1 2 3 4 5 abelthlem2 φ 1 S S 1 0 ball abs 1
49 48 simprd φ S 1 0 ball abs 1
50 49 8 sseldd φ X 0 ball abs 1
51 1 2 3 4 5 6 7 abelthlem5 φ X 0 ball abs 1 seq 0 + k 0 seq 0 + A k X k dom
52 50 51 mpdan φ seq 0 + k 0 seq 0 + A k X k dom
53 45 adantl φ n 0 k 0 seq 0 + A k X k n = seq 0 + A n X n
54 53 31 eqeltrd φ n 0 k 0 seq 0 + A k X k n
55 24 10 54 iserex φ seq 0 + k 0 seq 0 + A k X k dom seq N + k 0 seq 0 + A k X k dom
56 52 55 mpbid φ seq N + k 0 seq 0 + A k X k dom
57 36 37 46 47 56 isumcl φ n N seq 0 + A n X n
58 21 57 mulcld φ 1 X n N seq 0 + A n X n
59 58 abscld φ 1 X n N seq 0 + A n X n
60 35 59 readdcld φ 1 X n = 0 N 1 seq 0 + A n X n + 1 X n N seq 0 + A n X n
61 peano2re M M + 1
62 3 61 syl φ M + 1
63 9 rpred φ R
64 62 63 remulcld φ M + 1 R
65 1 2 3 4 5 6 7 8 abelthlem6 φ F X = 1 X n 0 seq 0 + A n X n
66 24 36 10 53 31 52 isumsplit φ n 0 seq 0 + A n X n = n = 0 N 1 seq 0 + A n X n + n N seq 0 + A n X n
67 66 oveq2d φ 1 X n 0 seq 0 + A n X n = 1 X n = 0 N 1 seq 0 + A n X n + n N seq 0 + A n X n
68 21 33 57 adddid φ 1 X n = 0 N 1 seq 0 + A n X n + n N seq 0 + A n X n = 1 X n = 0 N 1 seq 0 + A n X n + 1 X n N seq 0 + A n X n
69 65 67 68 3eqtrd φ F X = 1 X n = 0 N 1 seq 0 + A n X n + 1 X n N seq 0 + A n X n
70 69 fveq2d φ F X = 1 X n = 0 N 1 seq 0 + A n X n + 1 X n N seq 0 + A n X n
71 34 58 abstrid φ 1 X n = 0 N 1 seq 0 + A n X n + 1 X n N seq 0 + A n X n 1 X n = 0 N 1 seq 0 + A n X n + 1 X n N seq 0 + A n X n
72 70 71 eqbrtrd φ F X 1 X n = 0 N 1 seq 0 + A n X n + 1 X n N seq 0 + A n X n
73 3 63 remulcld φ M R
74 21 abscld φ 1 X
75 28 abscld φ n 0 seq 0 + A n
76 23 75 sylan2 φ n 0 N 1 seq 0 + A n
77 22 76 fsumrecl φ n = 0 N 1 seq 0 + A n
78 peano2re n = 0 N 1 seq 0 + A n n = 0 N 1 seq 0 + A n + 1
79 77 78 syl φ n = 0 N 1 seq 0 + A n + 1
80 74 79 remulcld φ 1 X n = 0 N 1 seq 0 + A n + 1
81 21 33 absmuld φ 1 X n = 0 N 1 seq 0 + A n X n = 1 X n = 0 N 1 seq 0 + A n X n
82 33 abscld φ n = 0 N 1 seq 0 + A n X n
83 21 absge0d φ 0 1 X
84 31 abscld φ n 0 seq 0 + A n X n
85 23 84 sylan2 φ n 0 N 1 seq 0 + A n X n
86 22 85 fsumrecl φ n = 0 N 1 seq 0 + A n X n
87 22 32 fsumabs φ n = 0 N 1 seq 0 + A n X n n = 0 N 1 seq 0 + A n X n
88 19 abscld φ X
89 reexpcl X n 0 X n
90 88 89 sylan φ n 0 X n
91 1red φ n 0 1
92 28 absge0d φ n 0 0 seq 0 + A n
93 88 adantr φ n 0 X
94 19 absge0d φ 0 X
95 94 adantr φ n 0 0 X
96 0cn 0
97 eqid abs = abs
98 97 cnmetdval X 0 X abs 0 = X 0
99 19 96 98 sylancl φ X abs 0 = X 0
100 19 subid1d φ X 0 = X
101 100 fveq2d φ X 0 = X
102 99 101 eqtrd φ X abs 0 = X
103 cnxmet abs ∞Met
104 1xr 1 *
105 elbl3 abs ∞Met 1 * 0 X X 0 ball abs 1 X abs 0 < 1
106 103 104 105 mpanl12 0 X X 0 ball abs 1 X abs 0 < 1
107 96 19 106 sylancr φ X 0 ball abs 1 X abs 0 < 1
108 50 107 mpbid φ X abs 0 < 1
109 102 108 eqbrtrrd φ X < 1
110 1re 1
111 ltle X 1 X < 1 X 1
112 88 110 111 sylancl φ X < 1 X 1
113 109 112 mpd φ X 1
114 113 adantr φ n 0 X 1
115 simpr φ n 0 n 0
116 exple1 X 0 X X 1 n 0 X n 1
117 93 95 114 115 116 syl31anc φ n 0 X n 1
118 90 91 75 92 117 lemul2ad φ n 0 seq 0 + A n X n seq 0 + A n 1
119 28 30 absmuld φ n 0 seq 0 + A n X n = seq 0 + A n X n
120 absexp X n 0 X n = X n
121 19 120 sylan φ n 0 X n = X n
122 121 oveq2d φ n 0 seq 0 + A n X n = seq 0 + A n X n
123 119 122 eqtr2d φ n 0 seq 0 + A n X n = seq 0 + A n X n
124 75 recnd φ n 0 seq 0 + A n
125 124 mulid1d φ n 0 seq 0 + A n 1 = seq 0 + A n
126 118 123 125 3brtr3d φ n 0 seq 0 + A n X n seq 0 + A n
127 23 126 sylan2 φ n 0 N 1 seq 0 + A n X n seq 0 + A n
128 22 85 76 127 fsumle φ n = 0 N 1 seq 0 + A n X n n = 0 N 1 seq 0 + A n
129 82 86 77 87 128 letrd φ n = 0 N 1 seq 0 + A n X n n = 0 N 1 seq 0 + A n
130 77 ltp1d φ n = 0 N 1 seq 0 + A n < n = 0 N 1 seq 0 + A n + 1
131 82 77 79 129 130 lelttrd φ n = 0 N 1 seq 0 + A n X n < n = 0 N 1 seq 0 + A n + 1
132 82 79 131 ltled φ n = 0 N 1 seq 0 + A n X n n = 0 N 1 seq 0 + A n + 1
133 82 79 74 83 132 lemul2ad φ 1 X n = 0 N 1 seq 0 + A n X n 1 X n = 0 N 1 seq 0 + A n + 1
134 81 133 eqbrtrd φ 1 X n = 0 N 1 seq 0 + A n X n 1 X n = 0 N 1 seq 0 + A n + 1
135 0red φ 0
136 23 92 sylan2 φ n 0 N 1 0 seq 0 + A n
137 22 76 136 fsumge0 φ 0 n = 0 N 1 seq 0 + A n
138 135 77 79 137 130 lelttrd φ 0 < n = 0 N 1 seq 0 + A n + 1
139 ltmuldiv 1 X R n = 0 N 1 seq 0 + A n + 1 0 < n = 0 N 1 seq 0 + A n + 1 1 X n = 0 N 1 seq 0 + A n + 1 < R 1 X < R n = 0 N 1 seq 0 + A n + 1
140 74 63 79 138 139 syl112anc φ 1 X n = 0 N 1 seq 0 + A n + 1 < R 1 X < R n = 0 N 1 seq 0 + A n + 1
141 12 140 mpbird φ 1 X n = 0 N 1 seq 0 + A n + 1 < R
142 35 80 63 134 141 lelttrd φ 1 X n = 0 N 1 seq 0 + A n X n < R
143 21 57 absmuld φ 1 X n N seq 0 + A n X n = 1 X n N seq 0 + A n X n
144 57 abscld φ n N seq 0 + A n X n
145 42 fveq2d k = n seq 0 + A k X k = seq 0 + A n X n
146 eqid k 0 seq 0 + A k X k = k 0 seq 0 + A k X k
147 fvex seq 0 + A n X n V
148 145 146 147 fvmpt n 0 k 0 seq 0 + A k X k n = seq 0 + A n X n
149 39 148 syl φ n N k 0 seq 0 + A k X k n = seq 0 + A n X n
150 47 abscld φ n N seq 0 + A n X n
151 uzid N N N
152 37 151 syl φ N N
153 oveq2 k = n X k = X n
154 eqid k 0 X k = k 0 X k
155 ovex X n V
156 153 154 155 fvmpt n 0 k 0 X k n = X n
157 39 156 syl φ n N k 0 X k n = X n
158 39 90 syldan φ n N X n
159 157 158 eqeltrd φ n N k 0 X k n
160 150 recnd φ n N seq 0 + A n X n
161 149 160 eqeltrd φ n N k 0 seq 0 + A k X k n
162 88 recnd φ X
163 absidm X X = X
164 19 163 syl φ X = X
165 164 109 eqbrtrd φ X < 1
166 162 165 10 157 geolim2 φ seq N + k 0 X k X N 1 X
167 seqex seq N + k 0 X k V
168 ovex X N 1 X V
169 167 168 breldm seq N + k 0 X k X N 1 X seq N + k 0 X k dom
170 166 169 syl φ seq N + k 0 X k dom
171 119 122 eqtrd φ n 0 seq 0 + A n X n = seq 0 + A n X n
172 39 171 syldan φ n N seq 0 + A n X n = seq 0 + A n X n
173 39 75 syldan φ n N seq 0 + A n
174 63 adantr φ n N R
175 88 adantr φ n N X
176 94 adantr φ n N 0 X
177 175 39 176 expge0d φ n N 0 X n
178 40 fveq2d k = n seq 0 + A k = seq 0 + A n
179 178 breq1d k = n seq 0 + A k < R seq 0 + A n < R
180 179 rspccva k N seq 0 + A k < R n N seq 0 + A n < R
181 11 180 sylan φ n N seq 0 + A n < R
182 173 174 181 ltled φ n N seq 0 + A n R
183 173 174 158 177 182 lemul1ad φ n N seq 0 + A n X n R X n
184 172 183 eqbrtrd φ n N seq 0 + A n X n R X n
185 149 fveq2d φ n N k 0 seq 0 + A k X k n = seq 0 + A n X n
186 absidm seq 0 + A n X n seq 0 + A n X n = seq 0 + A n X n
187 47 186 syl φ n N seq 0 + A n X n = seq 0 + A n X n
188 185 187 eqtrd φ n N k 0 seq 0 + A k X k n = seq 0 + A n X n
189 157 oveq2d φ n N R k 0 X k n = R X n
190 184 188 189 3brtr4d φ n N k 0 seq 0 + A k X k n R k 0 X k n
191 36 152 159 161 170 63 190 cvgcmpce φ seq N + k 0 seq 0 + A k X k dom
192 36 37 149 150 191 isumrecl φ n N seq 0 + A n X n
193 eldifsni X S 1 X 1
194 8 193 syl φ X 1
195 194 necomd φ 1 X
196 subeq0 1 X 1 X = 0 1 = X
197 196 necon3bid 1 X 1 X 0 1 X
198 17 19 197 sylancr φ 1 X 0 1 X
199 195 198 mpbird φ 1 X 0
200 21 199 absrpcld φ 1 X +
201 73 200 rerpdivcld φ M R 1 X
202 36 37 46 47 56 isumclim2 φ seq N + k 0 seq 0 + A k X k n N seq 0 + A n X n
203 36 37 149 160 191 isumclim2 φ seq N + k 0 seq 0 + A k X k n N seq 0 + A n X n
204 39 54 syldan φ n N k 0 seq 0 + A k X k n
205 46 fveq2d φ n N k 0 seq 0 + A k X k n = seq 0 + A n X n
206 149 205 eqtr4d φ n N k 0 seq 0 + A k X k n = k 0 seq 0 + A k X k n
207 36 202 203 37 204 206 iserabs φ n N seq 0 + A n X n n N seq 0 + A n X n
208 88 10 reexpcld φ X N
209 difrp X 1 X < 1 1 X +
210 88 110 209 sylancl φ X < 1 1 X +
211 109 210 mpbid φ 1 X +
212 208 211 rerpdivcld φ X N 1 X
213 63 212 remulcld φ R X N 1 X
214 153 oveq2d k = n R X k = R X n
215 eqid k 0 R X k = k 0 R X k
216 ovex R X n V
217 214 215 216 fvmpt n 0 k 0 R X k n = R X n
218 39 217 syl φ n N k 0 R X k n = R X n
219 174 158 remulcld φ n N R X n
220 9 rpcnd φ R
221 159 recnd φ n N k 0 X k n
222 218 189 eqtr4d φ n N k 0 R X k n = R k 0 X k n
223 36 37 220 166 221 222 isermulc2 φ seq N + k 0 R X k R X N 1 X
224 seqex seq N + k 0 R X k V
225 ovex R X N 1 X V
226 224 225 breldm seq N + k 0 R X k R X N 1 X seq N + k 0 R X k dom
227 223 226 syl φ seq N + k 0 R X k dom
228 36 37 149 150 218 219 184 191 227 isumle φ n N seq 0 + A n X n n N R X n
229 219 recnd φ n N R X n
230 36 37 218 229 223 isumclim φ n N R X n = R X N 1 X
231 228 230 breqtrd φ n N seq 0 + A n X n R X N 1 X
232 9 211 rpdivcld φ R 1 X +
233 232 rpred φ R 1 X
234 208 recnd φ X N
235 211 rpcnd φ 1 X
236 211 rpne0d φ 1 X 0
237 220 234 235 236 div12d φ R X N 1 X = X N R 1 X
238 1red φ 1
239 232 rpge0d φ 0 R 1 X
240 exple1 X 0 X X 1 N 0 X N 1
241 88 94 113 10 240 syl31anc φ X N 1
242 208 238 233 239 241 lemul1ad φ X N R 1 X 1 R 1 X
243 232 rpcnd φ R 1 X
244 243 mulid2d φ 1 R 1 X = R 1 X
245 242 244 breqtrd φ X N R 1 X R 1 X
246 237 245 eqbrtrd φ R X N 1 X R 1 X
247 18 simprd φ 1 X M 1 X
248 resubcl 1 X 1 X
249 110 88 248 sylancr φ 1 X
250 3 249 remulcld φ M 1 X
251 74 250 9 lemul2d φ 1 X M 1 X R 1 X R M 1 X
252 247 251 mpbid φ R 1 X R M 1 X
253 3 recnd φ M
254 220 253 235 mul12d φ R M 1 X = M R 1 X
255 220 235 mulcomd φ R 1 X = 1 X R
256 255 oveq2d φ M R 1 X = M 1 X R
257 253 235 220 mul12d φ M 1 X R = 1 X M R
258 254 256 257 3eqtrd φ R M 1 X = 1 X M R
259 252 258 breqtrd φ R 1 X 1 X M R
260 249 73 remulcld φ 1 X M R
261 63 260 200 lemuldivd φ R 1 X 1 X M R R 1 X M R 1 X
262 259 261 mpbid φ R 1 X M R 1 X
263 73 recnd φ M R
264 74 recnd φ 1 X
265 200 rpne0d φ 1 X 0
266 235 263 264 265 divassd φ 1 X M R 1 X = 1 X M R 1 X
267 262 266 breqtrd φ R 1 X M R 1 X
268 posdif X 1 X < 1 0 < 1 X
269 88 110 268 sylancl φ X < 1 0 < 1 X
270 109 269 mpbid φ 0 < 1 X
271 ledivmul R M R 1 X 1 X 0 < 1 X R 1 X M R 1 X R 1 X M R 1 X
272 63 201 249 270 271 syl112anc φ R 1 X M R 1 X R 1 X M R 1 X
273 267 272 mpbird φ R 1 X M R 1 X
274 213 233 201 246 273 letrd φ R X N 1 X M R 1 X
275 192 213 201 231 274 letrd φ n N seq 0 + A n X n M R 1 X
276 144 192 201 207 275 letrd φ n N seq 0 + A n X n M R 1 X
277 144 73 200 lemuldiv2d φ 1 X n N seq 0 + A n X n M R n N seq 0 + A n X n M R 1 X
278 276 277 mpbird φ 1 X n N seq 0 + A n X n M R
279 143 278 eqbrtrd φ 1 X n N seq 0 + A n X n M R
280 35 59 63 73 142 279 ltleaddd φ 1 X n = 0 N 1 seq 0 + A n X n + 1 X n N seq 0 + A n X n < R + M R
281 1cnd φ 1
282 253 281 220 adddird φ M + 1 R = M R + 1 R
283 220 mulid2d φ 1 R = R
284 283 oveq2d φ M R + 1 R = M R + R
285 263 220 addcomd φ M R + R = R + M R
286 282 284 285 3eqtrd φ M + 1 R = R + M R
287 280 286 breqtrrd φ 1 X n = 0 N 1 seq 0 + A n X n + 1 X n N seq 0 + A n X n < M + 1 R
288 16 60 64 72 287 lelttrd φ F X < M + 1 R